This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Expansion of membership in class union. Theorem 12 of Suppes p. 25. (Contributed by NM, 7-Aug-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elun | |- ( A e. ( B u. C ) <-> ( A e. B \/ A e. C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | |- ( A e. ( B u. C ) -> A e. _V ) |
|
| 2 | elex | |- ( A e. B -> A e. _V ) |
|
| 3 | elex | |- ( A e. C -> A e. _V ) |
|
| 4 | 2 3 | jaoi | |- ( ( A e. B \/ A e. C ) -> A e. _V ) |
| 5 | eleq1 | |- ( x = A -> ( x e. B <-> A e. B ) ) |
|
| 6 | eleq1 | |- ( x = A -> ( x e. C <-> A e. C ) ) |
|
| 7 | 5 6 | orbi12d | |- ( x = A -> ( ( x e. B \/ x e. C ) <-> ( A e. B \/ A e. C ) ) ) |
| 8 | df-un | |- ( B u. C ) = { x | ( x e. B \/ x e. C ) } |
|
| 9 | 7 8 | elab2g | |- ( A e. _V -> ( A e. ( B u. C ) <-> ( A e. B \/ A e. C ) ) ) |
| 10 | 1 4 9 | pm5.21nii | |- ( A e. ( B u. C ) <-> ( A e. B \/ A e. C ) ) |