This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fpwwe2 . (Contributed by Mario Carneiro, 18-May-2015) (Proof shortened by Peter Mazsa, 23-Sep-2022) (Revised by AV, 20-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fpwwe2.1 | |- W = { <. x , r >. | ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x [. ( `' r " { y } ) / u ]. ( u F ( r i^i ( u X. u ) ) ) = y ) ) } |
|
| fpwwe2.2 | |- ( ph -> A e. V ) |
||
| fpwwe2.3 | |- ( ( ph /\ ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) ) -> ( x F r ) e. A ) |
||
| fpwwe2.4 | |- X = U. dom W |
||
| Assertion | fpwwe2lem11 | |- ( ph -> X e. dom W ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fpwwe2.1 | |- W = { <. x , r >. | ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x [. ( `' r " { y } ) / u ]. ( u F ( r i^i ( u X. u ) ) ) = y ) ) } |
|
| 2 | fpwwe2.2 | |- ( ph -> A e. V ) |
|
| 3 | fpwwe2.3 | |- ( ( ph /\ ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) ) -> ( x F r ) e. A ) |
|
| 4 | fpwwe2.4 | |- X = U. dom W |
|
| 5 | vex | |- a e. _V |
|
| 6 | 5 | eldm | |- ( a e. dom W <-> E. s a W s ) |
| 7 | 1 2 | fpwwe2lem2 | |- ( ph -> ( a W s <-> ( ( a C_ A /\ s C_ ( a X. a ) ) /\ ( s We a /\ A. y e. a [. ( `' s " { y } ) / u ]. ( u F ( s i^i ( u X. u ) ) ) = y ) ) ) ) |
| 8 | 7 | simprbda | |- ( ( ph /\ a W s ) -> ( a C_ A /\ s C_ ( a X. a ) ) ) |
| 9 | 8 | simpld | |- ( ( ph /\ a W s ) -> a C_ A ) |
| 10 | velpw | |- ( a e. ~P A <-> a C_ A ) |
|
| 11 | 9 10 | sylibr | |- ( ( ph /\ a W s ) -> a e. ~P A ) |
| 12 | 11 | ex | |- ( ph -> ( a W s -> a e. ~P A ) ) |
| 13 | 12 | exlimdv | |- ( ph -> ( E. s a W s -> a e. ~P A ) ) |
| 14 | 6 13 | biimtrid | |- ( ph -> ( a e. dom W -> a e. ~P A ) ) |
| 15 | 14 | ssrdv | |- ( ph -> dom W C_ ~P A ) |
| 16 | sspwuni | |- ( dom W C_ ~P A <-> U. dom W C_ A ) |
|
| 17 | 15 16 | sylib | |- ( ph -> U. dom W C_ A ) |
| 18 | 4 17 | eqsstrid | |- ( ph -> X C_ A ) |
| 19 | vex | |- s e. _V |
|
| 20 | 19 | elrn | |- ( s e. ran W <-> E. a a W s ) |
| 21 | 8 | simprd | |- ( ( ph /\ a W s ) -> s C_ ( a X. a ) ) |
| 22 | 1 | relopabiv | |- Rel W |
| 23 | 22 | releldmi | |- ( a W s -> a e. dom W ) |
| 24 | 23 | adantl | |- ( ( ph /\ a W s ) -> a e. dom W ) |
| 25 | elssuni | |- ( a e. dom W -> a C_ U. dom W ) |
|
| 26 | 24 25 | syl | |- ( ( ph /\ a W s ) -> a C_ U. dom W ) |
| 27 | 26 4 | sseqtrrdi | |- ( ( ph /\ a W s ) -> a C_ X ) |
| 28 | xpss12 | |- ( ( a C_ X /\ a C_ X ) -> ( a X. a ) C_ ( X X. X ) ) |
|
| 29 | 27 27 28 | syl2anc | |- ( ( ph /\ a W s ) -> ( a X. a ) C_ ( X X. X ) ) |
| 30 | 21 29 | sstrd | |- ( ( ph /\ a W s ) -> s C_ ( X X. X ) ) |
| 31 | velpw | |- ( s e. ~P ( X X. X ) <-> s C_ ( X X. X ) ) |
|
| 32 | 30 31 | sylibr | |- ( ( ph /\ a W s ) -> s e. ~P ( X X. X ) ) |
| 33 | 32 | ex | |- ( ph -> ( a W s -> s e. ~P ( X X. X ) ) ) |
| 34 | 33 | exlimdv | |- ( ph -> ( E. a a W s -> s e. ~P ( X X. X ) ) ) |
| 35 | 20 34 | biimtrid | |- ( ph -> ( s e. ran W -> s e. ~P ( X X. X ) ) ) |
| 36 | 35 | ssrdv | |- ( ph -> ran W C_ ~P ( X X. X ) ) |
| 37 | sspwuni | |- ( ran W C_ ~P ( X X. X ) <-> U. ran W C_ ( X X. X ) ) |
|
| 38 | 36 37 | sylib | |- ( ph -> U. ran W C_ ( X X. X ) ) |
| 39 | 18 38 | jca | |- ( ph -> ( X C_ A /\ U. ran W C_ ( X X. X ) ) ) |
| 40 | n0 | |- ( n =/= (/) <-> E. y y e. n ) |
|
| 41 | ssel2 | |- ( ( n C_ X /\ y e. n ) -> y e. X ) |
|
| 42 | 41 | adantl | |- ( ( ph /\ ( n C_ X /\ y e. n ) ) -> y e. X ) |
| 43 | 4 | eleq2i | |- ( y e. X <-> y e. U. dom W ) |
| 44 | eluni2 | |- ( y e. U. dom W <-> E. a e. dom W y e. a ) |
|
| 45 | 43 44 | bitri | |- ( y e. X <-> E. a e. dom W y e. a ) |
| 46 | 42 45 | sylib | |- ( ( ph /\ ( n C_ X /\ y e. n ) ) -> E. a e. dom W y e. a ) |
| 47 | 5 | inex2 | |- ( n i^i a ) e. _V |
| 48 | 47 | a1i | |- ( ( ( ph /\ ( n C_ X /\ y e. n ) ) /\ ( a W s /\ y e. a ) ) -> ( n i^i a ) e. _V ) |
| 49 | 7 | simplbda | |- ( ( ph /\ a W s ) -> ( s We a /\ A. y e. a [. ( `' s " { y } ) / u ]. ( u F ( s i^i ( u X. u ) ) ) = y ) ) |
| 50 | 49 | simpld | |- ( ( ph /\ a W s ) -> s We a ) |
| 51 | 50 | ad2ant2r | |- ( ( ( ph /\ ( n C_ X /\ y e. n ) ) /\ ( a W s /\ y e. a ) ) -> s We a ) |
| 52 | wefr | |- ( s We a -> s Fr a ) |
|
| 53 | 51 52 | syl | |- ( ( ( ph /\ ( n C_ X /\ y e. n ) ) /\ ( a W s /\ y e. a ) ) -> s Fr a ) |
| 54 | inss2 | |- ( n i^i a ) C_ a |
|
| 55 | 54 | a1i | |- ( ( ( ph /\ ( n C_ X /\ y e. n ) ) /\ ( a W s /\ y e. a ) ) -> ( n i^i a ) C_ a ) |
| 56 | simplrr | |- ( ( ( ph /\ ( n C_ X /\ y e. n ) ) /\ ( a W s /\ y e. a ) ) -> y e. n ) |
|
| 57 | simprr | |- ( ( ( ph /\ ( n C_ X /\ y e. n ) ) /\ ( a W s /\ y e. a ) ) -> y e. a ) |
|
| 58 | inelcm | |- ( ( y e. n /\ y e. a ) -> ( n i^i a ) =/= (/) ) |
|
| 59 | 56 57 58 | syl2anc | |- ( ( ( ph /\ ( n C_ X /\ y e. n ) ) /\ ( a W s /\ y e. a ) ) -> ( n i^i a ) =/= (/) ) |
| 60 | fri | |- ( ( ( ( n i^i a ) e. _V /\ s Fr a ) /\ ( ( n i^i a ) C_ a /\ ( n i^i a ) =/= (/) ) ) -> E. v e. ( n i^i a ) A. z e. ( n i^i a ) -. z s v ) |
|
| 61 | 48 53 55 59 60 | syl22anc | |- ( ( ( ph /\ ( n C_ X /\ y e. n ) ) /\ ( a W s /\ y e. a ) ) -> E. v e. ( n i^i a ) A. z e. ( n i^i a ) -. z s v ) |
| 62 | simprl | |- ( ( ( ( ph /\ ( n C_ X /\ y e. n ) ) /\ ( a W s /\ y e. a ) ) /\ ( v e. ( n i^i a ) /\ A. z e. ( n i^i a ) -. z s v ) ) -> v e. ( n i^i a ) ) |
|
| 63 | 62 | elin1d | |- ( ( ( ( ph /\ ( n C_ X /\ y e. n ) ) /\ ( a W s /\ y e. a ) ) /\ ( v e. ( n i^i a ) /\ A. z e. ( n i^i a ) -. z s v ) ) -> v e. n ) |
| 64 | simplrr | |- ( ( ( ( ( ph /\ ( n C_ X /\ y e. n ) ) /\ ( a W s /\ y e. a ) ) /\ ( v e. ( n i^i a ) /\ A. z e. ( n i^i a ) -. z s v ) ) /\ w e. n ) -> A. z e. ( n i^i a ) -. z s v ) |
|
| 65 | ralnex | |- ( A. z e. ( n i^i a ) -. z s v <-> -. E. z e. ( n i^i a ) z s v ) |
|
| 66 | 64 65 | sylib | |- ( ( ( ( ( ph /\ ( n C_ X /\ y e. n ) ) /\ ( a W s /\ y e. a ) ) /\ ( v e. ( n i^i a ) /\ A. z e. ( n i^i a ) -. z s v ) ) /\ w e. n ) -> -. E. z e. ( n i^i a ) z s v ) |
| 67 | df-br | |- ( w U. ran W v <-> <. w , v >. e. U. ran W ) |
|
| 68 | eluni2 | |- ( <. w , v >. e. U. ran W <-> E. t e. ran W <. w , v >. e. t ) |
|
| 69 | 67 68 | bitri | |- ( w U. ran W v <-> E. t e. ran W <. w , v >. e. t ) |
| 70 | vex | |- t e. _V |
|
| 71 | 70 | elrn | |- ( t e. ran W <-> E. b b W t ) |
| 72 | df-br | |- ( w t v <-> <. w , v >. e. t ) |
|
| 73 | simprll | |- ( ( ( ( ( ph /\ ( n C_ X /\ y e. n ) ) /\ ( a W s /\ y e. a ) ) /\ ( v e. ( n i^i a ) /\ A. z e. ( n i^i a ) -. z s v ) ) /\ ( ( w e. n /\ b W t ) /\ w t v ) ) -> w e. n ) |
|
| 74 | 73 | adantr | |- ( ( ( ( ( ( ph /\ ( n C_ X /\ y e. n ) ) /\ ( a W s /\ y e. a ) ) /\ ( v e. ( n i^i a ) /\ A. z e. ( n i^i a ) -. z s v ) ) /\ ( ( w e. n /\ b W t ) /\ w t v ) ) /\ ( a C_ b /\ s = ( t i^i ( b X. a ) ) ) ) -> w e. n ) |
| 75 | simprr | |- ( ( ( ( ( ph /\ ( n C_ X /\ y e. n ) ) /\ ( a W s /\ y e. a ) ) /\ ( v e. ( n i^i a ) /\ A. z e. ( n i^i a ) -. z s v ) ) /\ ( ( w e. n /\ b W t ) /\ w t v ) ) -> w t v ) |
|
| 76 | simp-4l | |- ( ( ( ( ( ph /\ ( n C_ X /\ y e. n ) ) /\ ( a W s /\ y e. a ) ) /\ ( v e. ( n i^i a ) /\ A. z e. ( n i^i a ) -. z s v ) ) /\ ( ( w e. n /\ b W t ) /\ w t v ) ) -> ph ) |
|
| 77 | simprl | |- ( ( ( ph /\ ( n C_ X /\ y e. n ) ) /\ ( a W s /\ y e. a ) ) -> a W s ) |
|
| 78 | 77 | ad2antrr | |- ( ( ( ( ( ph /\ ( n C_ X /\ y e. n ) ) /\ ( a W s /\ y e. a ) ) /\ ( v e. ( n i^i a ) /\ A. z e. ( n i^i a ) -. z s v ) ) /\ ( ( w e. n /\ b W t ) /\ w t v ) ) -> a W s ) |
| 79 | simprlr | |- ( ( ( ( ( ph /\ ( n C_ X /\ y e. n ) ) /\ ( a W s /\ y e. a ) ) /\ ( v e. ( n i^i a ) /\ A. z e. ( n i^i a ) -. z s v ) ) /\ ( ( w e. n /\ b W t ) /\ w t v ) ) -> b W t ) |
|
| 80 | simprr | |- ( ( ph /\ ( a W s /\ b W t ) ) -> b W t ) |
|
| 81 | 1 2 | fpwwe2lem2 | |- ( ph -> ( b W t <-> ( ( b C_ A /\ t C_ ( b X. b ) ) /\ ( t We b /\ A. y e. b [. ( `' t " { y } ) / u ]. ( u F ( t i^i ( u X. u ) ) ) = y ) ) ) ) |
| 82 | 81 | adantr | |- ( ( ph /\ ( a W s /\ b W t ) ) -> ( b W t <-> ( ( b C_ A /\ t C_ ( b X. b ) ) /\ ( t We b /\ A. y e. b [. ( `' t " { y } ) / u ]. ( u F ( t i^i ( u X. u ) ) ) = y ) ) ) ) |
| 83 | 80 82 | mpbid | |- ( ( ph /\ ( a W s /\ b W t ) ) -> ( ( b C_ A /\ t C_ ( b X. b ) ) /\ ( t We b /\ A. y e. b [. ( `' t " { y } ) / u ]. ( u F ( t i^i ( u X. u ) ) ) = y ) ) ) |
| 84 | 83 | simpld | |- ( ( ph /\ ( a W s /\ b W t ) ) -> ( b C_ A /\ t C_ ( b X. b ) ) ) |
| 85 | 84 | simprd | |- ( ( ph /\ ( a W s /\ b W t ) ) -> t C_ ( b X. b ) ) |
| 86 | 76 78 79 85 | syl12anc | |- ( ( ( ( ( ph /\ ( n C_ X /\ y e. n ) ) /\ ( a W s /\ y e. a ) ) /\ ( v e. ( n i^i a ) /\ A. z e. ( n i^i a ) -. z s v ) ) /\ ( ( w e. n /\ b W t ) /\ w t v ) ) -> t C_ ( b X. b ) ) |
| 87 | 86 | ssbrd | |- ( ( ( ( ( ph /\ ( n C_ X /\ y e. n ) ) /\ ( a W s /\ y e. a ) ) /\ ( v e. ( n i^i a ) /\ A. z e. ( n i^i a ) -. z s v ) ) /\ ( ( w e. n /\ b W t ) /\ w t v ) ) -> ( w t v -> w ( b X. b ) v ) ) |
| 88 | 75 87 | mpd | |- ( ( ( ( ( ph /\ ( n C_ X /\ y e. n ) ) /\ ( a W s /\ y e. a ) ) /\ ( v e. ( n i^i a ) /\ A. z e. ( n i^i a ) -. z s v ) ) /\ ( ( w e. n /\ b W t ) /\ w t v ) ) -> w ( b X. b ) v ) |
| 89 | brxp | |- ( w ( b X. b ) v <-> ( w e. b /\ v e. b ) ) |
|
| 90 | 89 | simplbi | |- ( w ( b X. b ) v -> w e. b ) |
| 91 | 88 90 | syl | |- ( ( ( ( ( ph /\ ( n C_ X /\ y e. n ) ) /\ ( a W s /\ y e. a ) ) /\ ( v e. ( n i^i a ) /\ A. z e. ( n i^i a ) -. z s v ) ) /\ ( ( w e. n /\ b W t ) /\ w t v ) ) -> w e. b ) |
| 92 | 91 | adantr | |- ( ( ( ( ( ( ph /\ ( n C_ X /\ y e. n ) ) /\ ( a W s /\ y e. a ) ) /\ ( v e. ( n i^i a ) /\ A. z e. ( n i^i a ) -. z s v ) ) /\ ( ( w e. n /\ b W t ) /\ w t v ) ) /\ ( a C_ b /\ s = ( t i^i ( b X. a ) ) ) ) -> w e. b ) |
| 93 | 62 | elin2d | |- ( ( ( ( ph /\ ( n C_ X /\ y e. n ) ) /\ ( a W s /\ y e. a ) ) /\ ( v e. ( n i^i a ) /\ A. z e. ( n i^i a ) -. z s v ) ) -> v e. a ) |
| 94 | 93 | ad2antrr | |- ( ( ( ( ( ( ph /\ ( n C_ X /\ y e. n ) ) /\ ( a W s /\ y e. a ) ) /\ ( v e. ( n i^i a ) /\ A. z e. ( n i^i a ) -. z s v ) ) /\ ( ( w e. n /\ b W t ) /\ w t v ) ) /\ ( a C_ b /\ s = ( t i^i ( b X. a ) ) ) ) -> v e. a ) |
| 95 | simplrr | |- ( ( ( ( ( ( ph /\ ( n C_ X /\ y e. n ) ) /\ ( a W s /\ y e. a ) ) /\ ( v e. ( n i^i a ) /\ A. z e. ( n i^i a ) -. z s v ) ) /\ ( ( w e. n /\ b W t ) /\ w t v ) ) /\ ( a C_ b /\ s = ( t i^i ( b X. a ) ) ) ) -> w t v ) |
|
| 96 | brinxp2 | |- ( w ( t i^i ( b X. a ) ) v <-> ( ( w e. b /\ v e. a ) /\ w t v ) ) |
|
| 97 | 92 94 95 96 | syl21anbrc | |- ( ( ( ( ( ( ph /\ ( n C_ X /\ y e. n ) ) /\ ( a W s /\ y e. a ) ) /\ ( v e. ( n i^i a ) /\ A. z e. ( n i^i a ) -. z s v ) ) /\ ( ( w e. n /\ b W t ) /\ w t v ) ) /\ ( a C_ b /\ s = ( t i^i ( b X. a ) ) ) ) -> w ( t i^i ( b X. a ) ) v ) |
| 98 | simprr | |- ( ( ( ( ( ( ph /\ ( n C_ X /\ y e. n ) ) /\ ( a W s /\ y e. a ) ) /\ ( v e. ( n i^i a ) /\ A. z e. ( n i^i a ) -. z s v ) ) /\ ( ( w e. n /\ b W t ) /\ w t v ) ) /\ ( a C_ b /\ s = ( t i^i ( b X. a ) ) ) ) -> s = ( t i^i ( b X. a ) ) ) |
|
| 99 | 98 | breqd | |- ( ( ( ( ( ( ph /\ ( n C_ X /\ y e. n ) ) /\ ( a W s /\ y e. a ) ) /\ ( v e. ( n i^i a ) /\ A. z e. ( n i^i a ) -. z s v ) ) /\ ( ( w e. n /\ b W t ) /\ w t v ) ) /\ ( a C_ b /\ s = ( t i^i ( b X. a ) ) ) ) -> ( w s v <-> w ( t i^i ( b X. a ) ) v ) ) |
| 100 | 97 99 | mpbird | |- ( ( ( ( ( ( ph /\ ( n C_ X /\ y e. n ) ) /\ ( a W s /\ y e. a ) ) /\ ( v e. ( n i^i a ) /\ A. z e. ( n i^i a ) -. z s v ) ) /\ ( ( w e. n /\ b W t ) /\ w t v ) ) /\ ( a C_ b /\ s = ( t i^i ( b X. a ) ) ) ) -> w s v ) |
| 101 | 76 78 21 | syl2anc | |- ( ( ( ( ( ph /\ ( n C_ X /\ y e. n ) ) /\ ( a W s /\ y e. a ) ) /\ ( v e. ( n i^i a ) /\ A. z e. ( n i^i a ) -. z s v ) ) /\ ( ( w e. n /\ b W t ) /\ w t v ) ) -> s C_ ( a X. a ) ) |
| 102 | 101 | adantr | |- ( ( ( ( ( ( ph /\ ( n C_ X /\ y e. n ) ) /\ ( a W s /\ y e. a ) ) /\ ( v e. ( n i^i a ) /\ A. z e. ( n i^i a ) -. z s v ) ) /\ ( ( w e. n /\ b W t ) /\ w t v ) ) /\ ( a C_ b /\ s = ( t i^i ( b X. a ) ) ) ) -> s C_ ( a X. a ) ) |
| 103 | 102 | ssbrd | |- ( ( ( ( ( ( ph /\ ( n C_ X /\ y e. n ) ) /\ ( a W s /\ y e. a ) ) /\ ( v e. ( n i^i a ) /\ A. z e. ( n i^i a ) -. z s v ) ) /\ ( ( w e. n /\ b W t ) /\ w t v ) ) /\ ( a C_ b /\ s = ( t i^i ( b X. a ) ) ) ) -> ( w s v -> w ( a X. a ) v ) ) |
| 104 | 100 103 | mpd | |- ( ( ( ( ( ( ph /\ ( n C_ X /\ y e. n ) ) /\ ( a W s /\ y e. a ) ) /\ ( v e. ( n i^i a ) /\ A. z e. ( n i^i a ) -. z s v ) ) /\ ( ( w e. n /\ b W t ) /\ w t v ) ) /\ ( a C_ b /\ s = ( t i^i ( b X. a ) ) ) ) -> w ( a X. a ) v ) |
| 105 | brxp | |- ( w ( a X. a ) v <-> ( w e. a /\ v e. a ) ) |
|
| 106 | 105 | simplbi | |- ( w ( a X. a ) v -> w e. a ) |
| 107 | 104 106 | syl | |- ( ( ( ( ( ( ph /\ ( n C_ X /\ y e. n ) ) /\ ( a W s /\ y e. a ) ) /\ ( v e. ( n i^i a ) /\ A. z e. ( n i^i a ) -. z s v ) ) /\ ( ( w e. n /\ b W t ) /\ w t v ) ) /\ ( a C_ b /\ s = ( t i^i ( b X. a ) ) ) ) -> w e. a ) |
| 108 | 74 107 | elind | |- ( ( ( ( ( ( ph /\ ( n C_ X /\ y e. n ) ) /\ ( a W s /\ y e. a ) ) /\ ( v e. ( n i^i a ) /\ A. z e. ( n i^i a ) -. z s v ) ) /\ ( ( w e. n /\ b W t ) /\ w t v ) ) /\ ( a C_ b /\ s = ( t i^i ( b X. a ) ) ) ) -> w e. ( n i^i a ) ) |
| 109 | breq1 | |- ( z = w -> ( z s v <-> w s v ) ) |
|
| 110 | 109 | rspcev | |- ( ( w e. ( n i^i a ) /\ w s v ) -> E. z e. ( n i^i a ) z s v ) |
| 111 | 108 100 110 | syl2anc | |- ( ( ( ( ( ( ph /\ ( n C_ X /\ y e. n ) ) /\ ( a W s /\ y e. a ) ) /\ ( v e. ( n i^i a ) /\ A. z e. ( n i^i a ) -. z s v ) ) /\ ( ( w e. n /\ b W t ) /\ w t v ) ) /\ ( a C_ b /\ s = ( t i^i ( b X. a ) ) ) ) -> E. z e. ( n i^i a ) z s v ) |
| 112 | 73 | adantr | |- ( ( ( ( ( ( ph /\ ( n C_ X /\ y e. n ) ) /\ ( a W s /\ y e. a ) ) /\ ( v e. ( n i^i a ) /\ A. z e. ( n i^i a ) -. z s v ) ) /\ ( ( w e. n /\ b W t ) /\ w t v ) ) /\ ( b C_ a /\ t = ( s i^i ( a X. b ) ) ) ) -> w e. n ) |
| 113 | simprl | |- ( ( ( ( ( ( ph /\ ( n C_ X /\ y e. n ) ) /\ ( a W s /\ y e. a ) ) /\ ( v e. ( n i^i a ) /\ A. z e. ( n i^i a ) -. z s v ) ) /\ ( ( w e. n /\ b W t ) /\ w t v ) ) /\ ( b C_ a /\ t = ( s i^i ( a X. b ) ) ) ) -> b C_ a ) |
|
| 114 | 91 | adantr | |- ( ( ( ( ( ( ph /\ ( n C_ X /\ y e. n ) ) /\ ( a W s /\ y e. a ) ) /\ ( v e. ( n i^i a ) /\ A. z e. ( n i^i a ) -. z s v ) ) /\ ( ( w e. n /\ b W t ) /\ w t v ) ) /\ ( b C_ a /\ t = ( s i^i ( a X. b ) ) ) ) -> w e. b ) |
| 115 | 113 114 | sseldd | |- ( ( ( ( ( ( ph /\ ( n C_ X /\ y e. n ) ) /\ ( a W s /\ y e. a ) ) /\ ( v e. ( n i^i a ) /\ A. z e. ( n i^i a ) -. z s v ) ) /\ ( ( w e. n /\ b W t ) /\ w t v ) ) /\ ( b C_ a /\ t = ( s i^i ( a X. b ) ) ) ) -> w e. a ) |
| 116 | 112 115 | elind | |- ( ( ( ( ( ( ph /\ ( n C_ X /\ y e. n ) ) /\ ( a W s /\ y e. a ) ) /\ ( v e. ( n i^i a ) /\ A. z e. ( n i^i a ) -. z s v ) ) /\ ( ( w e. n /\ b W t ) /\ w t v ) ) /\ ( b C_ a /\ t = ( s i^i ( a X. b ) ) ) ) -> w e. ( n i^i a ) ) |
| 117 | simplrr | |- ( ( ( ( ( ( ph /\ ( n C_ X /\ y e. n ) ) /\ ( a W s /\ y e. a ) ) /\ ( v e. ( n i^i a ) /\ A. z e. ( n i^i a ) -. z s v ) ) /\ ( ( w e. n /\ b W t ) /\ w t v ) ) /\ ( b C_ a /\ t = ( s i^i ( a X. b ) ) ) ) -> w t v ) |
|
| 118 | simprr | |- ( ( ( ( ( ( ph /\ ( n C_ X /\ y e. n ) ) /\ ( a W s /\ y e. a ) ) /\ ( v e. ( n i^i a ) /\ A. z e. ( n i^i a ) -. z s v ) ) /\ ( ( w e. n /\ b W t ) /\ w t v ) ) /\ ( b C_ a /\ t = ( s i^i ( a X. b ) ) ) ) -> t = ( s i^i ( a X. b ) ) ) |
|
| 119 | inss1 | |- ( s i^i ( a X. b ) ) C_ s |
|
| 120 | 118 119 | eqsstrdi | |- ( ( ( ( ( ( ph /\ ( n C_ X /\ y e. n ) ) /\ ( a W s /\ y e. a ) ) /\ ( v e. ( n i^i a ) /\ A. z e. ( n i^i a ) -. z s v ) ) /\ ( ( w e. n /\ b W t ) /\ w t v ) ) /\ ( b C_ a /\ t = ( s i^i ( a X. b ) ) ) ) -> t C_ s ) |
| 121 | 120 | ssbrd | |- ( ( ( ( ( ( ph /\ ( n C_ X /\ y e. n ) ) /\ ( a W s /\ y e. a ) ) /\ ( v e. ( n i^i a ) /\ A. z e. ( n i^i a ) -. z s v ) ) /\ ( ( w e. n /\ b W t ) /\ w t v ) ) /\ ( b C_ a /\ t = ( s i^i ( a X. b ) ) ) ) -> ( w t v -> w s v ) ) |
| 122 | 117 121 | mpd | |- ( ( ( ( ( ( ph /\ ( n C_ X /\ y e. n ) ) /\ ( a W s /\ y e. a ) ) /\ ( v e. ( n i^i a ) /\ A. z e. ( n i^i a ) -. z s v ) ) /\ ( ( w e. n /\ b W t ) /\ w t v ) ) /\ ( b C_ a /\ t = ( s i^i ( a X. b ) ) ) ) -> w s v ) |
| 123 | 116 122 110 | syl2anc | |- ( ( ( ( ( ( ph /\ ( n C_ X /\ y e. n ) ) /\ ( a W s /\ y e. a ) ) /\ ( v e. ( n i^i a ) /\ A. z e. ( n i^i a ) -. z s v ) ) /\ ( ( w e. n /\ b W t ) /\ w t v ) ) /\ ( b C_ a /\ t = ( s i^i ( a X. b ) ) ) ) -> E. z e. ( n i^i a ) z s v ) |
| 124 | 2 | adantr | |- ( ( ph /\ ( a W s /\ b W t ) ) -> A e. V ) |
| 125 | 3 | adantlr | |- ( ( ( ph /\ ( a W s /\ b W t ) ) /\ ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) ) -> ( x F r ) e. A ) |
| 126 | simprl | |- ( ( ph /\ ( a W s /\ b W t ) ) -> a W s ) |
|
| 127 | 1 124 125 126 80 | fpwwe2lem9 | |- ( ( ph /\ ( a W s /\ b W t ) ) -> ( ( a C_ b /\ s = ( t i^i ( b X. a ) ) ) \/ ( b C_ a /\ t = ( s i^i ( a X. b ) ) ) ) ) |
| 128 | 76 78 79 127 | syl12anc | |- ( ( ( ( ( ph /\ ( n C_ X /\ y e. n ) ) /\ ( a W s /\ y e. a ) ) /\ ( v e. ( n i^i a ) /\ A. z e. ( n i^i a ) -. z s v ) ) /\ ( ( w e. n /\ b W t ) /\ w t v ) ) -> ( ( a C_ b /\ s = ( t i^i ( b X. a ) ) ) \/ ( b C_ a /\ t = ( s i^i ( a X. b ) ) ) ) ) |
| 129 | 111 123 128 | mpjaodan | |- ( ( ( ( ( ph /\ ( n C_ X /\ y e. n ) ) /\ ( a W s /\ y e. a ) ) /\ ( v e. ( n i^i a ) /\ A. z e. ( n i^i a ) -. z s v ) ) /\ ( ( w e. n /\ b W t ) /\ w t v ) ) -> E. z e. ( n i^i a ) z s v ) |
| 130 | 129 | expr | |- ( ( ( ( ( ph /\ ( n C_ X /\ y e. n ) ) /\ ( a W s /\ y e. a ) ) /\ ( v e. ( n i^i a ) /\ A. z e. ( n i^i a ) -. z s v ) ) /\ ( w e. n /\ b W t ) ) -> ( w t v -> E. z e. ( n i^i a ) z s v ) ) |
| 131 | 72 130 | biimtrrid | |- ( ( ( ( ( ph /\ ( n C_ X /\ y e. n ) ) /\ ( a W s /\ y e. a ) ) /\ ( v e. ( n i^i a ) /\ A. z e. ( n i^i a ) -. z s v ) ) /\ ( w e. n /\ b W t ) ) -> ( <. w , v >. e. t -> E. z e. ( n i^i a ) z s v ) ) |
| 132 | 131 | expr | |- ( ( ( ( ( ph /\ ( n C_ X /\ y e. n ) ) /\ ( a W s /\ y e. a ) ) /\ ( v e. ( n i^i a ) /\ A. z e. ( n i^i a ) -. z s v ) ) /\ w e. n ) -> ( b W t -> ( <. w , v >. e. t -> E. z e. ( n i^i a ) z s v ) ) ) |
| 133 | 132 | exlimdv | |- ( ( ( ( ( ph /\ ( n C_ X /\ y e. n ) ) /\ ( a W s /\ y e. a ) ) /\ ( v e. ( n i^i a ) /\ A. z e. ( n i^i a ) -. z s v ) ) /\ w e. n ) -> ( E. b b W t -> ( <. w , v >. e. t -> E. z e. ( n i^i a ) z s v ) ) ) |
| 134 | 71 133 | biimtrid | |- ( ( ( ( ( ph /\ ( n C_ X /\ y e. n ) ) /\ ( a W s /\ y e. a ) ) /\ ( v e. ( n i^i a ) /\ A. z e. ( n i^i a ) -. z s v ) ) /\ w e. n ) -> ( t e. ran W -> ( <. w , v >. e. t -> E. z e. ( n i^i a ) z s v ) ) ) |
| 135 | 134 | rexlimdv | |- ( ( ( ( ( ph /\ ( n C_ X /\ y e. n ) ) /\ ( a W s /\ y e. a ) ) /\ ( v e. ( n i^i a ) /\ A. z e. ( n i^i a ) -. z s v ) ) /\ w e. n ) -> ( E. t e. ran W <. w , v >. e. t -> E. z e. ( n i^i a ) z s v ) ) |
| 136 | 69 135 | biimtrid | |- ( ( ( ( ( ph /\ ( n C_ X /\ y e. n ) ) /\ ( a W s /\ y e. a ) ) /\ ( v e. ( n i^i a ) /\ A. z e. ( n i^i a ) -. z s v ) ) /\ w e. n ) -> ( w U. ran W v -> E. z e. ( n i^i a ) z s v ) ) |
| 137 | 66 136 | mtod | |- ( ( ( ( ( ph /\ ( n C_ X /\ y e. n ) ) /\ ( a W s /\ y e. a ) ) /\ ( v e. ( n i^i a ) /\ A. z e. ( n i^i a ) -. z s v ) ) /\ w e. n ) -> -. w U. ran W v ) |
| 138 | 137 | ralrimiva | |- ( ( ( ( ph /\ ( n C_ X /\ y e. n ) ) /\ ( a W s /\ y e. a ) ) /\ ( v e. ( n i^i a ) /\ A. z e. ( n i^i a ) -. z s v ) ) -> A. w e. n -. w U. ran W v ) |
| 139 | 61 63 138 | reximssdv | |- ( ( ( ph /\ ( n C_ X /\ y e. n ) ) /\ ( a W s /\ y e. a ) ) -> E. v e. n A. w e. n -. w U. ran W v ) |
| 140 | 139 | exp32 | |- ( ( ph /\ ( n C_ X /\ y e. n ) ) -> ( a W s -> ( y e. a -> E. v e. n A. w e. n -. w U. ran W v ) ) ) |
| 141 | 140 | exlimdv | |- ( ( ph /\ ( n C_ X /\ y e. n ) ) -> ( E. s a W s -> ( y e. a -> E. v e. n A. w e. n -. w U. ran W v ) ) ) |
| 142 | 6 141 | biimtrid | |- ( ( ph /\ ( n C_ X /\ y e. n ) ) -> ( a e. dom W -> ( y e. a -> E. v e. n A. w e. n -. w U. ran W v ) ) ) |
| 143 | 142 | rexlimdv | |- ( ( ph /\ ( n C_ X /\ y e. n ) ) -> ( E. a e. dom W y e. a -> E. v e. n A. w e. n -. w U. ran W v ) ) |
| 144 | 46 143 | mpd | |- ( ( ph /\ ( n C_ X /\ y e. n ) ) -> E. v e. n A. w e. n -. w U. ran W v ) |
| 145 | 144 | expr | |- ( ( ph /\ n C_ X ) -> ( y e. n -> E. v e. n A. w e. n -. w U. ran W v ) ) |
| 146 | 145 | exlimdv | |- ( ( ph /\ n C_ X ) -> ( E. y y e. n -> E. v e. n A. w e. n -. w U. ran W v ) ) |
| 147 | 40 146 | biimtrid | |- ( ( ph /\ n C_ X ) -> ( n =/= (/) -> E. v e. n A. w e. n -. w U. ran W v ) ) |
| 148 | 147 | expimpd | |- ( ph -> ( ( n C_ X /\ n =/= (/) ) -> E. v e. n A. w e. n -. w U. ran W v ) ) |
| 149 | 148 | alrimiv | |- ( ph -> A. n ( ( n C_ X /\ n =/= (/) ) -> E. v e. n A. w e. n -. w U. ran W v ) ) |
| 150 | df-fr | |- ( U. ran W Fr X <-> A. n ( ( n C_ X /\ n =/= (/) ) -> E. v e. n A. w e. n -. w U. ran W v ) ) |
|
| 151 | 149 150 | sylibr | |- ( ph -> U. ran W Fr X ) |
| 152 | 4 | eleq2i | |- ( w e. X <-> w e. U. dom W ) |
| 153 | eluni2 | |- ( w e. U. dom W <-> E. b e. dom W w e. b ) |
|
| 154 | 152 153 | bitri | |- ( w e. X <-> E. b e. dom W w e. b ) |
| 155 | 45 154 | anbi12i | |- ( ( y e. X /\ w e. X ) <-> ( E. a e. dom W y e. a /\ E. b e. dom W w e. b ) ) |
| 156 | reeanv | |- ( E. a e. dom W E. b e. dom W ( y e. a /\ w e. b ) <-> ( E. a e. dom W y e. a /\ E. b e. dom W w e. b ) ) |
|
| 157 | 155 156 | bitr4i | |- ( ( y e. X /\ w e. X ) <-> E. a e. dom W E. b e. dom W ( y e. a /\ w e. b ) ) |
| 158 | vex | |- b e. _V |
|
| 159 | 158 | eldm | |- ( b e. dom W <-> E. t b W t ) |
| 160 | 6 159 | anbi12i | |- ( ( a e. dom W /\ b e. dom W ) <-> ( E. s a W s /\ E. t b W t ) ) |
| 161 | exdistrv | |- ( E. s E. t ( a W s /\ b W t ) <-> ( E. s a W s /\ E. t b W t ) ) |
|
| 162 | 160 161 | bitr4i | |- ( ( a e. dom W /\ b e. dom W ) <-> E. s E. t ( a W s /\ b W t ) ) |
| 163 | 83 | simprd | |- ( ( ph /\ ( a W s /\ b W t ) ) -> ( t We b /\ A. y e. b [. ( `' t " { y } ) / u ]. ( u F ( t i^i ( u X. u ) ) ) = y ) ) |
| 164 | 163 | simpld | |- ( ( ph /\ ( a W s /\ b W t ) ) -> t We b ) |
| 165 | 164 | ad2antrr | |- ( ( ( ( ph /\ ( a W s /\ b W t ) ) /\ ( y e. a /\ w e. b ) ) /\ ( a C_ b /\ s = ( t i^i ( b X. a ) ) ) ) -> t We b ) |
| 166 | weso | |- ( t We b -> t Or b ) |
|
| 167 | 165 166 | syl | |- ( ( ( ( ph /\ ( a W s /\ b W t ) ) /\ ( y e. a /\ w e. b ) ) /\ ( a C_ b /\ s = ( t i^i ( b X. a ) ) ) ) -> t Or b ) |
| 168 | simprl | |- ( ( ( ( ph /\ ( a W s /\ b W t ) ) /\ ( y e. a /\ w e. b ) ) /\ ( a C_ b /\ s = ( t i^i ( b X. a ) ) ) ) -> a C_ b ) |
|
| 169 | simplrl | |- ( ( ( ( ph /\ ( a W s /\ b W t ) ) /\ ( y e. a /\ w e. b ) ) /\ ( a C_ b /\ s = ( t i^i ( b X. a ) ) ) ) -> y e. a ) |
|
| 170 | 168 169 | sseldd | |- ( ( ( ( ph /\ ( a W s /\ b W t ) ) /\ ( y e. a /\ w e. b ) ) /\ ( a C_ b /\ s = ( t i^i ( b X. a ) ) ) ) -> y e. b ) |
| 171 | simplrr | |- ( ( ( ( ph /\ ( a W s /\ b W t ) ) /\ ( y e. a /\ w e. b ) ) /\ ( a C_ b /\ s = ( t i^i ( b X. a ) ) ) ) -> w e. b ) |
|
| 172 | solin | |- ( ( t Or b /\ ( y e. b /\ w e. b ) ) -> ( y t w \/ y = w \/ w t y ) ) |
|
| 173 | 167 170 171 172 | syl12anc | |- ( ( ( ( ph /\ ( a W s /\ b W t ) ) /\ ( y e. a /\ w e. b ) ) /\ ( a C_ b /\ s = ( t i^i ( b X. a ) ) ) ) -> ( y t w \/ y = w \/ w t y ) ) |
| 174 | 22 | relelrni | |- ( b W t -> t e. ran W ) |
| 175 | 174 | ad2antll | |- ( ( ph /\ ( a W s /\ b W t ) ) -> t e. ran W ) |
| 176 | 175 | ad2antrr | |- ( ( ( ( ph /\ ( a W s /\ b W t ) ) /\ ( y e. a /\ w e. b ) ) /\ ( a C_ b /\ s = ( t i^i ( b X. a ) ) ) ) -> t e. ran W ) |
| 177 | elssuni | |- ( t e. ran W -> t C_ U. ran W ) |
|
| 178 | 176 177 | syl | |- ( ( ( ( ph /\ ( a W s /\ b W t ) ) /\ ( y e. a /\ w e. b ) ) /\ ( a C_ b /\ s = ( t i^i ( b X. a ) ) ) ) -> t C_ U. ran W ) |
| 179 | 178 | ssbrd | |- ( ( ( ( ph /\ ( a W s /\ b W t ) ) /\ ( y e. a /\ w e. b ) ) /\ ( a C_ b /\ s = ( t i^i ( b X. a ) ) ) ) -> ( y t w -> y U. ran W w ) ) |
| 180 | idd | |- ( ( ( ( ph /\ ( a W s /\ b W t ) ) /\ ( y e. a /\ w e. b ) ) /\ ( a C_ b /\ s = ( t i^i ( b X. a ) ) ) ) -> ( y = w -> y = w ) ) |
|
| 181 | 178 | ssbrd | |- ( ( ( ( ph /\ ( a W s /\ b W t ) ) /\ ( y e. a /\ w e. b ) ) /\ ( a C_ b /\ s = ( t i^i ( b X. a ) ) ) ) -> ( w t y -> w U. ran W y ) ) |
| 182 | 179 180 181 | 3orim123d | |- ( ( ( ( ph /\ ( a W s /\ b W t ) ) /\ ( y e. a /\ w e. b ) ) /\ ( a C_ b /\ s = ( t i^i ( b X. a ) ) ) ) -> ( ( y t w \/ y = w \/ w t y ) -> ( y U. ran W w \/ y = w \/ w U. ran W y ) ) ) |
| 183 | 173 182 | mpd | |- ( ( ( ( ph /\ ( a W s /\ b W t ) ) /\ ( y e. a /\ w e. b ) ) /\ ( a C_ b /\ s = ( t i^i ( b X. a ) ) ) ) -> ( y U. ran W w \/ y = w \/ w U. ran W y ) ) |
| 184 | 50 | adantrr | |- ( ( ph /\ ( a W s /\ b W t ) ) -> s We a ) |
| 185 | 184 | ad2antrr | |- ( ( ( ( ph /\ ( a W s /\ b W t ) ) /\ ( y e. a /\ w e. b ) ) /\ ( b C_ a /\ t = ( s i^i ( a X. b ) ) ) ) -> s We a ) |
| 186 | weso | |- ( s We a -> s Or a ) |
|
| 187 | 185 186 | syl | |- ( ( ( ( ph /\ ( a W s /\ b W t ) ) /\ ( y e. a /\ w e. b ) ) /\ ( b C_ a /\ t = ( s i^i ( a X. b ) ) ) ) -> s Or a ) |
| 188 | simplrl | |- ( ( ( ( ph /\ ( a W s /\ b W t ) ) /\ ( y e. a /\ w e. b ) ) /\ ( b C_ a /\ t = ( s i^i ( a X. b ) ) ) ) -> y e. a ) |
|
| 189 | simprl | |- ( ( ( ( ph /\ ( a W s /\ b W t ) ) /\ ( y e. a /\ w e. b ) ) /\ ( b C_ a /\ t = ( s i^i ( a X. b ) ) ) ) -> b C_ a ) |
|
| 190 | simplrr | |- ( ( ( ( ph /\ ( a W s /\ b W t ) ) /\ ( y e. a /\ w e. b ) ) /\ ( b C_ a /\ t = ( s i^i ( a X. b ) ) ) ) -> w e. b ) |
|
| 191 | 189 190 | sseldd | |- ( ( ( ( ph /\ ( a W s /\ b W t ) ) /\ ( y e. a /\ w e. b ) ) /\ ( b C_ a /\ t = ( s i^i ( a X. b ) ) ) ) -> w e. a ) |
| 192 | solin | |- ( ( s Or a /\ ( y e. a /\ w e. a ) ) -> ( y s w \/ y = w \/ w s y ) ) |
|
| 193 | 187 188 191 192 | syl12anc | |- ( ( ( ( ph /\ ( a W s /\ b W t ) ) /\ ( y e. a /\ w e. b ) ) /\ ( b C_ a /\ t = ( s i^i ( a X. b ) ) ) ) -> ( y s w \/ y = w \/ w s y ) ) |
| 194 | 22 | relelrni | |- ( a W s -> s e. ran W ) |
| 195 | 194 | ad2antrl | |- ( ( ph /\ ( a W s /\ b W t ) ) -> s e. ran W ) |
| 196 | 195 | ad2antrr | |- ( ( ( ( ph /\ ( a W s /\ b W t ) ) /\ ( y e. a /\ w e. b ) ) /\ ( b C_ a /\ t = ( s i^i ( a X. b ) ) ) ) -> s e. ran W ) |
| 197 | elssuni | |- ( s e. ran W -> s C_ U. ran W ) |
|
| 198 | 196 197 | syl | |- ( ( ( ( ph /\ ( a W s /\ b W t ) ) /\ ( y e. a /\ w e. b ) ) /\ ( b C_ a /\ t = ( s i^i ( a X. b ) ) ) ) -> s C_ U. ran W ) |
| 199 | 198 | ssbrd | |- ( ( ( ( ph /\ ( a W s /\ b W t ) ) /\ ( y e. a /\ w e. b ) ) /\ ( b C_ a /\ t = ( s i^i ( a X. b ) ) ) ) -> ( y s w -> y U. ran W w ) ) |
| 200 | idd | |- ( ( ( ( ph /\ ( a W s /\ b W t ) ) /\ ( y e. a /\ w e. b ) ) /\ ( b C_ a /\ t = ( s i^i ( a X. b ) ) ) ) -> ( y = w -> y = w ) ) |
|
| 201 | 198 | ssbrd | |- ( ( ( ( ph /\ ( a W s /\ b W t ) ) /\ ( y e. a /\ w e. b ) ) /\ ( b C_ a /\ t = ( s i^i ( a X. b ) ) ) ) -> ( w s y -> w U. ran W y ) ) |
| 202 | 199 200 201 | 3orim123d | |- ( ( ( ( ph /\ ( a W s /\ b W t ) ) /\ ( y e. a /\ w e. b ) ) /\ ( b C_ a /\ t = ( s i^i ( a X. b ) ) ) ) -> ( ( y s w \/ y = w \/ w s y ) -> ( y U. ran W w \/ y = w \/ w U. ran W y ) ) ) |
| 203 | 193 202 | mpd | |- ( ( ( ( ph /\ ( a W s /\ b W t ) ) /\ ( y e. a /\ w e. b ) ) /\ ( b C_ a /\ t = ( s i^i ( a X. b ) ) ) ) -> ( y U. ran W w \/ y = w \/ w U. ran W y ) ) |
| 204 | 127 | adantr | |- ( ( ( ph /\ ( a W s /\ b W t ) ) /\ ( y e. a /\ w e. b ) ) -> ( ( a C_ b /\ s = ( t i^i ( b X. a ) ) ) \/ ( b C_ a /\ t = ( s i^i ( a X. b ) ) ) ) ) |
| 205 | 183 203 204 | mpjaodan | |- ( ( ( ph /\ ( a W s /\ b W t ) ) /\ ( y e. a /\ w e. b ) ) -> ( y U. ran W w \/ y = w \/ w U. ran W y ) ) |
| 206 | 205 | exp31 | |- ( ph -> ( ( a W s /\ b W t ) -> ( ( y e. a /\ w e. b ) -> ( y U. ran W w \/ y = w \/ w U. ran W y ) ) ) ) |
| 207 | 206 | exlimdvv | |- ( ph -> ( E. s E. t ( a W s /\ b W t ) -> ( ( y e. a /\ w e. b ) -> ( y U. ran W w \/ y = w \/ w U. ran W y ) ) ) ) |
| 208 | 162 207 | biimtrid | |- ( ph -> ( ( a e. dom W /\ b e. dom W ) -> ( ( y e. a /\ w e. b ) -> ( y U. ran W w \/ y = w \/ w U. ran W y ) ) ) ) |
| 209 | 208 | rexlimdvv | |- ( ph -> ( E. a e. dom W E. b e. dom W ( y e. a /\ w e. b ) -> ( y U. ran W w \/ y = w \/ w U. ran W y ) ) ) |
| 210 | 157 209 | biimtrid | |- ( ph -> ( ( y e. X /\ w e. X ) -> ( y U. ran W w \/ y = w \/ w U. ran W y ) ) ) |
| 211 | 210 | ralrimivv | |- ( ph -> A. y e. X A. w e. X ( y U. ran W w \/ y = w \/ w U. ran W y ) ) |
| 212 | dfwe2 | |- ( U. ran W We X <-> ( U. ran W Fr X /\ A. y e. X A. w e. X ( y U. ran W w \/ y = w \/ w U. ran W y ) ) ) |
|
| 213 | 151 211 212 | sylanbrc | |- ( ph -> U. ran W We X ) |
| 214 | 1 | fpwwe2cbv | |- W = { <. z , t >. | ( ( z C_ A /\ t C_ ( z X. z ) ) /\ ( t We z /\ A. w e. z [. ( `' t " { w } ) / b ]. ( b F ( t i^i ( b X. b ) ) ) = w ) ) } |
| 215 | 2 | adantr | |- ( ( ph /\ a W s ) -> A e. V ) |
| 216 | simpr | |- ( ( ph /\ a W s ) -> a W s ) |
|
| 217 | 214 215 216 | fpwwe2lem3 | |- ( ( ( ph /\ a W s ) /\ y e. a ) -> ( ( `' s " { y } ) F ( s i^i ( ( `' s " { y } ) X. ( `' s " { y } ) ) ) ) = y ) |
| 218 | 217 | anasss | |- ( ( ph /\ ( a W s /\ y e. a ) ) -> ( ( `' s " { y } ) F ( s i^i ( ( `' s " { y } ) X. ( `' s " { y } ) ) ) ) = y ) |
| 219 | cnvimass | |- ( `' U. ran W " { y } ) C_ dom U. ran W |
|
| 220 | 2 18 | ssexd | |- ( ph -> X e. _V ) |
| 221 | 220 220 | xpexd | |- ( ph -> ( X X. X ) e. _V ) |
| 222 | 221 38 | ssexd | |- ( ph -> U. ran W e. _V ) |
| 223 | 222 | adantr | |- ( ( ph /\ ( a W s /\ y e. a ) ) -> U. ran W e. _V ) |
| 224 | 223 | dmexd | |- ( ( ph /\ ( a W s /\ y e. a ) ) -> dom U. ran W e. _V ) |
| 225 | ssexg | |- ( ( ( `' U. ran W " { y } ) C_ dom U. ran W /\ dom U. ran W e. _V ) -> ( `' U. ran W " { y } ) e. _V ) |
|
| 226 | 219 224 225 | sylancr | |- ( ( ph /\ ( a W s /\ y e. a ) ) -> ( `' U. ran W " { y } ) e. _V ) |
| 227 | id | |- ( u = ( `' U. ran W " { y } ) -> u = ( `' U. ran W " { y } ) ) |
|
| 228 | olc | |- ( w = y -> ( w s y \/ w = y ) ) |
|
| 229 | df-br | |- ( z U. ran W w <-> <. z , w >. e. U. ran W ) |
|
| 230 | eluni2 | |- ( <. z , w >. e. U. ran W <-> E. t e. ran W <. z , w >. e. t ) |
|
| 231 | 229 230 | bitri | |- ( z U. ran W w <-> E. t e. ran W <. z , w >. e. t ) |
| 232 | df-br | |- ( z t w <-> <. z , w >. e. t ) |
|
| 233 | 85 | ad2antrr | |- ( ( ( ( ph /\ ( a W s /\ b W t ) ) /\ ( ( w s y \/ w = y ) /\ y e. a ) ) /\ ( a C_ b /\ s = ( t i^i ( b X. a ) ) ) ) -> t C_ ( b X. b ) ) |
| 234 | 233 | ssbrd | |- ( ( ( ( ph /\ ( a W s /\ b W t ) ) /\ ( ( w s y \/ w = y ) /\ y e. a ) ) /\ ( a C_ b /\ s = ( t i^i ( b X. a ) ) ) ) -> ( z t w -> z ( b X. b ) w ) ) |
| 235 | brxp | |- ( z ( b X. b ) w <-> ( z e. b /\ w e. b ) ) |
|
| 236 | 235 | simplbi | |- ( z ( b X. b ) w -> z e. b ) |
| 237 | 234 236 | syl6 | |- ( ( ( ( ph /\ ( a W s /\ b W t ) ) /\ ( ( w s y \/ w = y ) /\ y e. a ) ) /\ ( a C_ b /\ s = ( t i^i ( b X. a ) ) ) ) -> ( z t w -> z e. b ) ) |
| 238 | 21 | adantrr | |- ( ( ph /\ ( a W s /\ b W t ) ) -> s C_ ( a X. a ) ) |
| 239 | 238 | ssbrd | |- ( ( ph /\ ( a W s /\ b W t ) ) -> ( w s y -> w ( a X. a ) y ) ) |
| 240 | 239 | imp | |- ( ( ( ph /\ ( a W s /\ b W t ) ) /\ w s y ) -> w ( a X. a ) y ) |
| 241 | brxp | |- ( w ( a X. a ) y <-> ( w e. a /\ y e. a ) ) |
|
| 242 | 241 | simplbi | |- ( w ( a X. a ) y -> w e. a ) |
| 243 | 240 242 | syl | |- ( ( ( ph /\ ( a W s /\ b W t ) ) /\ w s y ) -> w e. a ) |
| 244 | 243 | a1d | |- ( ( ( ph /\ ( a W s /\ b W t ) ) /\ w s y ) -> ( y e. a -> w e. a ) ) |
| 245 | elequ1 | |- ( w = y -> ( w e. a <-> y e. a ) ) |
|
| 246 | 245 | biimprd | |- ( w = y -> ( y e. a -> w e. a ) ) |
| 247 | 246 | adantl | |- ( ( ( ph /\ ( a W s /\ b W t ) ) /\ w = y ) -> ( y e. a -> w e. a ) ) |
| 248 | 244 247 | jaodan | |- ( ( ( ph /\ ( a W s /\ b W t ) ) /\ ( w s y \/ w = y ) ) -> ( y e. a -> w e. a ) ) |
| 249 | 248 | impr | |- ( ( ( ph /\ ( a W s /\ b W t ) ) /\ ( ( w s y \/ w = y ) /\ y e. a ) ) -> w e. a ) |
| 250 | 249 | adantr | |- ( ( ( ( ph /\ ( a W s /\ b W t ) ) /\ ( ( w s y \/ w = y ) /\ y e. a ) ) /\ ( a C_ b /\ s = ( t i^i ( b X. a ) ) ) ) -> w e. a ) |
| 251 | 237 250 | jctird | |- ( ( ( ( ph /\ ( a W s /\ b W t ) ) /\ ( ( w s y \/ w = y ) /\ y e. a ) ) /\ ( a C_ b /\ s = ( t i^i ( b X. a ) ) ) ) -> ( z t w -> ( z e. b /\ w e. a ) ) ) |
| 252 | brxp | |- ( z ( b X. a ) w <-> ( z e. b /\ w e. a ) ) |
|
| 253 | 251 252 | imbitrrdi | |- ( ( ( ( ph /\ ( a W s /\ b W t ) ) /\ ( ( w s y \/ w = y ) /\ y e. a ) ) /\ ( a C_ b /\ s = ( t i^i ( b X. a ) ) ) ) -> ( z t w -> z ( b X. a ) w ) ) |
| 254 | 253 | ancld | |- ( ( ( ( ph /\ ( a W s /\ b W t ) ) /\ ( ( w s y \/ w = y ) /\ y e. a ) ) /\ ( a C_ b /\ s = ( t i^i ( b X. a ) ) ) ) -> ( z t w -> ( z t w /\ z ( b X. a ) w ) ) ) |
| 255 | simprr | |- ( ( ( ( ph /\ ( a W s /\ b W t ) ) /\ ( ( w s y \/ w = y ) /\ y e. a ) ) /\ ( a C_ b /\ s = ( t i^i ( b X. a ) ) ) ) -> s = ( t i^i ( b X. a ) ) ) |
|
| 256 | 255 | breqd | |- ( ( ( ( ph /\ ( a W s /\ b W t ) ) /\ ( ( w s y \/ w = y ) /\ y e. a ) ) /\ ( a C_ b /\ s = ( t i^i ( b X. a ) ) ) ) -> ( z s w <-> z ( t i^i ( b X. a ) ) w ) ) |
| 257 | brin | |- ( z ( t i^i ( b X. a ) ) w <-> ( z t w /\ z ( b X. a ) w ) ) |
|
| 258 | 256 257 | bitrdi | |- ( ( ( ( ph /\ ( a W s /\ b W t ) ) /\ ( ( w s y \/ w = y ) /\ y e. a ) ) /\ ( a C_ b /\ s = ( t i^i ( b X. a ) ) ) ) -> ( z s w <-> ( z t w /\ z ( b X. a ) w ) ) ) |
| 259 | 254 258 | sylibrd | |- ( ( ( ( ph /\ ( a W s /\ b W t ) ) /\ ( ( w s y \/ w = y ) /\ y e. a ) ) /\ ( a C_ b /\ s = ( t i^i ( b X. a ) ) ) ) -> ( z t w -> z s w ) ) |
| 260 | simprr | |- ( ( ( ( ph /\ ( a W s /\ b W t ) ) /\ ( ( w s y \/ w = y ) /\ y e. a ) ) /\ ( b C_ a /\ t = ( s i^i ( a X. b ) ) ) ) -> t = ( s i^i ( a X. b ) ) ) |
|
| 261 | 260 119 | eqsstrdi | |- ( ( ( ( ph /\ ( a W s /\ b W t ) ) /\ ( ( w s y \/ w = y ) /\ y e. a ) ) /\ ( b C_ a /\ t = ( s i^i ( a X. b ) ) ) ) -> t C_ s ) |
| 262 | 261 | ssbrd | |- ( ( ( ( ph /\ ( a W s /\ b W t ) ) /\ ( ( w s y \/ w = y ) /\ y e. a ) ) /\ ( b C_ a /\ t = ( s i^i ( a X. b ) ) ) ) -> ( z t w -> z s w ) ) |
| 263 | 127 | adantr | |- ( ( ( ph /\ ( a W s /\ b W t ) ) /\ ( ( w s y \/ w = y ) /\ y e. a ) ) -> ( ( a C_ b /\ s = ( t i^i ( b X. a ) ) ) \/ ( b C_ a /\ t = ( s i^i ( a X. b ) ) ) ) ) |
| 264 | 259 262 263 | mpjaodan | |- ( ( ( ph /\ ( a W s /\ b W t ) ) /\ ( ( w s y \/ w = y ) /\ y e. a ) ) -> ( z t w -> z s w ) ) |
| 265 | 232 264 | biimtrrid | |- ( ( ( ph /\ ( a W s /\ b W t ) ) /\ ( ( w s y \/ w = y ) /\ y e. a ) ) -> ( <. z , w >. e. t -> z s w ) ) |
| 266 | 265 | exp32 | |- ( ( ph /\ ( a W s /\ b W t ) ) -> ( ( w s y \/ w = y ) -> ( y e. a -> ( <. z , w >. e. t -> z s w ) ) ) ) |
| 267 | 266 | expr | |- ( ( ph /\ a W s ) -> ( b W t -> ( ( w s y \/ w = y ) -> ( y e. a -> ( <. z , w >. e. t -> z s w ) ) ) ) ) |
| 268 | 267 | com24 | |- ( ( ph /\ a W s ) -> ( y e. a -> ( ( w s y \/ w = y ) -> ( b W t -> ( <. z , w >. e. t -> z s w ) ) ) ) ) |
| 269 | 268 | impr | |- ( ( ph /\ ( a W s /\ y e. a ) ) -> ( ( w s y \/ w = y ) -> ( b W t -> ( <. z , w >. e. t -> z s w ) ) ) ) |
| 270 | 269 | imp | |- ( ( ( ph /\ ( a W s /\ y e. a ) ) /\ ( w s y \/ w = y ) ) -> ( b W t -> ( <. z , w >. e. t -> z s w ) ) ) |
| 271 | 270 | exlimdv | |- ( ( ( ph /\ ( a W s /\ y e. a ) ) /\ ( w s y \/ w = y ) ) -> ( E. b b W t -> ( <. z , w >. e. t -> z s w ) ) ) |
| 272 | 71 271 | biimtrid | |- ( ( ( ph /\ ( a W s /\ y e. a ) ) /\ ( w s y \/ w = y ) ) -> ( t e. ran W -> ( <. z , w >. e. t -> z s w ) ) ) |
| 273 | 272 | rexlimdv | |- ( ( ( ph /\ ( a W s /\ y e. a ) ) /\ ( w s y \/ w = y ) ) -> ( E. t e. ran W <. z , w >. e. t -> z s w ) ) |
| 274 | 231 273 | biimtrid | |- ( ( ( ph /\ ( a W s /\ y e. a ) ) /\ ( w s y \/ w = y ) ) -> ( z U. ran W w -> z s w ) ) |
| 275 | 228 274 | sylan2 | |- ( ( ( ph /\ ( a W s /\ y e. a ) ) /\ w = y ) -> ( z U. ran W w -> z s w ) ) |
| 276 | 275 | ex | |- ( ( ph /\ ( a W s /\ y e. a ) ) -> ( w = y -> ( z U. ran W w -> z s w ) ) ) |
| 277 | 276 | alrimiv | |- ( ( ph /\ ( a W s /\ y e. a ) ) -> A. w ( w = y -> ( z U. ran W w -> z s w ) ) ) |
| 278 | breq2 | |- ( w = y -> ( z U. ran W w <-> z U. ran W y ) ) |
|
| 279 | breq2 | |- ( w = y -> ( z s w <-> z s y ) ) |
|
| 280 | 278 279 | imbi12d | |- ( w = y -> ( ( z U. ran W w -> z s w ) <-> ( z U. ran W y -> z s y ) ) ) |
| 281 | 280 | equsalvw | |- ( A. w ( w = y -> ( z U. ran W w -> z s w ) ) <-> ( z U. ran W y -> z s y ) ) |
| 282 | 277 281 | sylib | |- ( ( ph /\ ( a W s /\ y e. a ) ) -> ( z U. ran W y -> z s y ) ) |
| 283 | 194 | ad2antrl | |- ( ( ph /\ ( a W s /\ y e. a ) ) -> s e. ran W ) |
| 284 | 283 197 | syl | |- ( ( ph /\ ( a W s /\ y e. a ) ) -> s C_ U. ran W ) |
| 285 | 284 | ssbrd | |- ( ( ph /\ ( a W s /\ y e. a ) ) -> ( z s y -> z U. ran W y ) ) |
| 286 | 282 285 | impbid | |- ( ( ph /\ ( a W s /\ y e. a ) ) -> ( z U. ran W y <-> z s y ) ) |
| 287 | vex | |- z e. _V |
|
| 288 | 287 | eliniseg | |- ( y e. _V -> ( z e. ( `' U. ran W " { y } ) <-> z U. ran W y ) ) |
| 289 | 288 | elv | |- ( z e. ( `' U. ran W " { y } ) <-> z U. ran W y ) |
| 290 | 287 | eliniseg | |- ( y e. _V -> ( z e. ( `' s " { y } ) <-> z s y ) ) |
| 291 | 290 | elv | |- ( z e. ( `' s " { y } ) <-> z s y ) |
| 292 | 286 289 291 | 3bitr4g | |- ( ( ph /\ ( a W s /\ y e. a ) ) -> ( z e. ( `' U. ran W " { y } ) <-> z e. ( `' s " { y } ) ) ) |
| 293 | 292 | eqrdv | |- ( ( ph /\ ( a W s /\ y e. a ) ) -> ( `' U. ran W " { y } ) = ( `' s " { y } ) ) |
| 294 | 227 293 | sylan9eqr | |- ( ( ( ph /\ ( a W s /\ y e. a ) ) /\ u = ( `' U. ran W " { y } ) ) -> u = ( `' s " { y } ) ) |
| 295 | 294 | sqxpeqd | |- ( ( ( ph /\ ( a W s /\ y e. a ) ) /\ u = ( `' U. ran W " { y } ) ) -> ( u X. u ) = ( ( `' s " { y } ) X. ( `' s " { y } ) ) ) |
| 296 | 295 | ineq2d | |- ( ( ( ph /\ ( a W s /\ y e. a ) ) /\ u = ( `' U. ran W " { y } ) ) -> ( U. ran W i^i ( u X. u ) ) = ( U. ran W i^i ( ( `' s " { y } ) X. ( `' s " { y } ) ) ) ) |
| 297 | relinxp | |- Rel ( U. ran W i^i ( ( `' s " { y } ) X. ( `' s " { y } ) ) ) |
|
| 298 | relinxp | |- Rel ( s i^i ( ( `' s " { y } ) X. ( `' s " { y } ) ) ) |
|
| 299 | vex | |- w e. _V |
|
| 300 | 299 | eliniseg | |- ( y e. _V -> ( w e. ( `' s " { y } ) <-> w s y ) ) |
| 301 | 290 300 | anbi12d | |- ( y e. _V -> ( ( z e. ( `' s " { y } ) /\ w e. ( `' s " { y } ) ) <-> ( z s y /\ w s y ) ) ) |
| 302 | 301 | elv | |- ( ( z e. ( `' s " { y } ) /\ w e. ( `' s " { y } ) ) <-> ( z s y /\ w s y ) ) |
| 303 | orc | |- ( w s y -> ( w s y \/ w = y ) ) |
|
| 304 | 303 274 | sylan2 | |- ( ( ( ph /\ ( a W s /\ y e. a ) ) /\ w s y ) -> ( z U. ran W w -> z s w ) ) |
| 305 | 304 | adantrl | |- ( ( ( ph /\ ( a W s /\ y e. a ) ) /\ ( z s y /\ w s y ) ) -> ( z U. ran W w -> z s w ) ) |
| 306 | 284 | adantr | |- ( ( ( ph /\ ( a W s /\ y e. a ) ) /\ ( z s y /\ w s y ) ) -> s C_ U. ran W ) |
| 307 | 306 | ssbrd | |- ( ( ( ph /\ ( a W s /\ y e. a ) ) /\ ( z s y /\ w s y ) ) -> ( z s w -> z U. ran W w ) ) |
| 308 | 305 307 | impbid | |- ( ( ( ph /\ ( a W s /\ y e. a ) ) /\ ( z s y /\ w s y ) ) -> ( z U. ran W w <-> z s w ) ) |
| 309 | 302 308 | sylan2b | |- ( ( ( ph /\ ( a W s /\ y e. a ) ) /\ ( z e. ( `' s " { y } ) /\ w e. ( `' s " { y } ) ) ) -> ( z U. ran W w <-> z s w ) ) |
| 310 | 309 | pm5.32da | |- ( ( ph /\ ( a W s /\ y e. a ) ) -> ( ( ( z e. ( `' s " { y } ) /\ w e. ( `' s " { y } ) ) /\ z U. ran W w ) <-> ( ( z e. ( `' s " { y } ) /\ w e. ( `' s " { y } ) ) /\ z s w ) ) ) |
| 311 | df-br | |- ( z ( U. ran W i^i ( ( `' s " { y } ) X. ( `' s " { y } ) ) ) w <-> <. z , w >. e. ( U. ran W i^i ( ( `' s " { y } ) X. ( `' s " { y } ) ) ) ) |
|
| 312 | brinxp2 | |- ( z ( U. ran W i^i ( ( `' s " { y } ) X. ( `' s " { y } ) ) ) w <-> ( ( z e. ( `' s " { y } ) /\ w e. ( `' s " { y } ) ) /\ z U. ran W w ) ) |
|
| 313 | 311 312 | bitr3i | |- ( <. z , w >. e. ( U. ran W i^i ( ( `' s " { y } ) X. ( `' s " { y } ) ) ) <-> ( ( z e. ( `' s " { y } ) /\ w e. ( `' s " { y } ) ) /\ z U. ran W w ) ) |
| 314 | df-br | |- ( z ( s i^i ( ( `' s " { y } ) X. ( `' s " { y } ) ) ) w <-> <. z , w >. e. ( s i^i ( ( `' s " { y } ) X. ( `' s " { y } ) ) ) ) |
|
| 315 | brinxp2 | |- ( z ( s i^i ( ( `' s " { y } ) X. ( `' s " { y } ) ) ) w <-> ( ( z e. ( `' s " { y } ) /\ w e. ( `' s " { y } ) ) /\ z s w ) ) |
|
| 316 | 314 315 | bitr3i | |- ( <. z , w >. e. ( s i^i ( ( `' s " { y } ) X. ( `' s " { y } ) ) ) <-> ( ( z e. ( `' s " { y } ) /\ w e. ( `' s " { y } ) ) /\ z s w ) ) |
| 317 | 310 313 316 | 3bitr4g | |- ( ( ph /\ ( a W s /\ y e. a ) ) -> ( <. z , w >. e. ( U. ran W i^i ( ( `' s " { y } ) X. ( `' s " { y } ) ) ) <-> <. z , w >. e. ( s i^i ( ( `' s " { y } ) X. ( `' s " { y } ) ) ) ) ) |
| 318 | 297 298 317 | eqrelrdv | |- ( ( ph /\ ( a W s /\ y e. a ) ) -> ( U. ran W i^i ( ( `' s " { y } ) X. ( `' s " { y } ) ) ) = ( s i^i ( ( `' s " { y } ) X. ( `' s " { y } ) ) ) ) |
| 319 | 318 | adantr | |- ( ( ( ph /\ ( a W s /\ y e. a ) ) /\ u = ( `' U. ran W " { y } ) ) -> ( U. ran W i^i ( ( `' s " { y } ) X. ( `' s " { y } ) ) ) = ( s i^i ( ( `' s " { y } ) X. ( `' s " { y } ) ) ) ) |
| 320 | 296 319 | eqtrd | |- ( ( ( ph /\ ( a W s /\ y e. a ) ) /\ u = ( `' U. ran W " { y } ) ) -> ( U. ran W i^i ( u X. u ) ) = ( s i^i ( ( `' s " { y } ) X. ( `' s " { y } ) ) ) ) |
| 321 | 294 320 | oveq12d | |- ( ( ( ph /\ ( a W s /\ y e. a ) ) /\ u = ( `' U. ran W " { y } ) ) -> ( u F ( U. ran W i^i ( u X. u ) ) ) = ( ( `' s " { y } ) F ( s i^i ( ( `' s " { y } ) X. ( `' s " { y } ) ) ) ) ) |
| 322 | 321 | eqeq1d | |- ( ( ( ph /\ ( a W s /\ y e. a ) ) /\ u = ( `' U. ran W " { y } ) ) -> ( ( u F ( U. ran W i^i ( u X. u ) ) ) = y <-> ( ( `' s " { y } ) F ( s i^i ( ( `' s " { y } ) X. ( `' s " { y } ) ) ) ) = y ) ) |
| 323 | 226 322 | sbcied | |- ( ( ph /\ ( a W s /\ y e. a ) ) -> ( [. ( `' U. ran W " { y } ) / u ]. ( u F ( U. ran W i^i ( u X. u ) ) ) = y <-> ( ( `' s " { y } ) F ( s i^i ( ( `' s " { y } ) X. ( `' s " { y } ) ) ) ) = y ) ) |
| 324 | 218 323 | mpbird | |- ( ( ph /\ ( a W s /\ y e. a ) ) -> [. ( `' U. ran W " { y } ) / u ]. ( u F ( U. ran W i^i ( u X. u ) ) ) = y ) |
| 325 | 324 | exp32 | |- ( ph -> ( a W s -> ( y e. a -> [. ( `' U. ran W " { y } ) / u ]. ( u F ( U. ran W i^i ( u X. u ) ) ) = y ) ) ) |
| 326 | 325 | exlimdv | |- ( ph -> ( E. s a W s -> ( y e. a -> [. ( `' U. ran W " { y } ) / u ]. ( u F ( U. ran W i^i ( u X. u ) ) ) = y ) ) ) |
| 327 | 6 326 | biimtrid | |- ( ph -> ( a e. dom W -> ( y e. a -> [. ( `' U. ran W " { y } ) / u ]. ( u F ( U. ran W i^i ( u X. u ) ) ) = y ) ) ) |
| 328 | 327 | rexlimdv | |- ( ph -> ( E. a e. dom W y e. a -> [. ( `' U. ran W " { y } ) / u ]. ( u F ( U. ran W i^i ( u X. u ) ) ) = y ) ) |
| 329 | 45 328 | biimtrid | |- ( ph -> ( y e. X -> [. ( `' U. ran W " { y } ) / u ]. ( u F ( U. ran W i^i ( u X. u ) ) ) = y ) ) |
| 330 | 329 | ralrimiv | |- ( ph -> A. y e. X [. ( `' U. ran W " { y } ) / u ]. ( u F ( U. ran W i^i ( u X. u ) ) ) = y ) |
| 331 | 213 330 | jca | |- ( ph -> ( U. ran W We X /\ A. y e. X [. ( `' U. ran W " { y } ) / u ]. ( u F ( U. ran W i^i ( u X. u ) ) ) = y ) ) |
| 332 | 1 2 | fpwwe2lem2 | |- ( ph -> ( X W U. ran W <-> ( ( X C_ A /\ U. ran W C_ ( X X. X ) ) /\ ( U. ran W We X /\ A. y e. X [. ( `' U. ran W " { y } ) / u ]. ( u F ( U. ran W i^i ( u X. u ) ) ) = y ) ) ) ) |
| 333 | 39 331 332 | mpbir2and | |- ( ph -> X W U. ran W ) |
| 334 | 22 | releldmi | |- ( X W U. ran W -> X e. dom W ) |
| 335 | 333 334 | syl | |- ( ph -> X e. dom W ) |