This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the well-founded relation predicate. Definition 6.24(1) of TakeutiZaring p. 30. For alternate definitions, see dffr2 and dffr3 . A class is called well-founded when the membership relation _E (see df-eprel ) is well-founded on it, that is, A is well-founded if _E Fr A (some sources request that the membership relation be well-founded on its transitive closure). (Contributed by NM, 3-Apr-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-fr | |- ( R Fr A <-> A. x ( ( x C_ A /\ x =/= (/) ) -> E. y e. x A. z e. x -. z R y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cR | |- R |
|
| 1 | cA | |- A |
|
| 2 | 1 0 | wfr | |- R Fr A |
| 3 | vx | |- x |
|
| 4 | 3 | cv | |- x |
| 5 | 4 1 | wss | |- x C_ A |
| 6 | c0 | |- (/) |
|
| 7 | 4 6 | wne | |- x =/= (/) |
| 8 | 5 7 | wa | |- ( x C_ A /\ x =/= (/) ) |
| 9 | vy | |- y |
|
| 10 | vz | |- z |
|
| 11 | 10 | cv | |- z |
| 12 | 9 | cv | |- y |
| 13 | 11 12 0 | wbr | |- z R y |
| 14 | 13 | wn | |- -. z R y |
| 15 | 14 10 4 | wral | |- A. z e. x -. z R y |
| 16 | 15 9 4 | wrex | |- E. y e. x A. z e. x -. z R y |
| 17 | 8 16 | wi | |- ( ( x C_ A /\ x =/= (/) ) -> E. y e. x A. z e. x -. z R y ) |
| 18 | 17 3 | wal | |- A. x ( ( x C_ A /\ x =/= (/) ) -> E. y e. x A. z e. x -. z R y ) |
| 19 | 2 18 | wb | |- ( R Fr A <-> A. x ( ( x C_ A /\ x =/= (/) ) -> E. y e. x A. z e. x -. z R y ) ) |