This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Compare a finite sum to an integral (the integral here is given as a function with a known derivative). (Contributed by Mario Carneiro, 14-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvfsumabs.m | |- ( ph -> N e. ( ZZ>= ` M ) ) |
|
| dvfsumabs.a | |- ( ph -> ( x e. ( M [,] N ) |-> A ) e. ( ( M [,] N ) -cn-> CC ) ) |
||
| dvfsumabs.v | |- ( ( ph /\ x e. ( M (,) N ) ) -> B e. V ) |
||
| dvfsumabs.b | |- ( ph -> ( RR _D ( x e. ( M (,) N ) |-> A ) ) = ( x e. ( M (,) N ) |-> B ) ) |
||
| dvfsumabs.c | |- ( x = M -> A = C ) |
||
| dvfsumabs.d | |- ( x = N -> A = D ) |
||
| dvfsumabs.x | |- ( ( ph /\ k e. ( M ..^ N ) ) -> X e. CC ) |
||
| dvfsumabs.y | |- ( ( ph /\ k e. ( M ..^ N ) ) -> Y e. RR ) |
||
| dvfsumabs.l | |- ( ( ph /\ ( k e. ( M ..^ N ) /\ x e. ( k (,) ( k + 1 ) ) ) ) -> ( abs ` ( X - B ) ) <_ Y ) |
||
| Assertion | dvfsumabs | |- ( ph -> ( abs ` ( sum_ k e. ( M ..^ N ) X - ( D - C ) ) ) <_ sum_ k e. ( M ..^ N ) Y ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvfsumabs.m | |- ( ph -> N e. ( ZZ>= ` M ) ) |
|
| 2 | dvfsumabs.a | |- ( ph -> ( x e. ( M [,] N ) |-> A ) e. ( ( M [,] N ) -cn-> CC ) ) |
|
| 3 | dvfsumabs.v | |- ( ( ph /\ x e. ( M (,) N ) ) -> B e. V ) |
|
| 4 | dvfsumabs.b | |- ( ph -> ( RR _D ( x e. ( M (,) N ) |-> A ) ) = ( x e. ( M (,) N ) |-> B ) ) |
|
| 5 | dvfsumabs.c | |- ( x = M -> A = C ) |
|
| 6 | dvfsumabs.d | |- ( x = N -> A = D ) |
|
| 7 | dvfsumabs.x | |- ( ( ph /\ k e. ( M ..^ N ) ) -> X e. CC ) |
|
| 8 | dvfsumabs.y | |- ( ( ph /\ k e. ( M ..^ N ) ) -> Y e. RR ) |
|
| 9 | dvfsumabs.l | |- ( ( ph /\ ( k e. ( M ..^ N ) /\ x e. ( k (,) ( k + 1 ) ) ) ) -> ( abs ` ( X - B ) ) <_ Y ) |
|
| 10 | fzofi | |- ( M ..^ N ) e. Fin |
|
| 11 | 10 | a1i | |- ( ph -> ( M ..^ N ) e. Fin ) |
| 12 | eluzel2 | |- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
|
| 13 | 1 12 | syl | |- ( ph -> M e. ZZ ) |
| 14 | eluzelz | |- ( N e. ( ZZ>= ` M ) -> N e. ZZ ) |
|
| 15 | 1 14 | syl | |- ( ph -> N e. ZZ ) |
| 16 | fzval2 | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M ... N ) = ( ( M [,] N ) i^i ZZ ) ) |
|
| 17 | 13 15 16 | syl2anc | |- ( ph -> ( M ... N ) = ( ( M [,] N ) i^i ZZ ) ) |
| 18 | inss1 | |- ( ( M [,] N ) i^i ZZ ) C_ ( M [,] N ) |
|
| 19 | 17 18 | eqsstrdi | |- ( ph -> ( M ... N ) C_ ( M [,] N ) ) |
| 20 | 19 | sselda | |- ( ( ph /\ y e. ( M ... N ) ) -> y e. ( M [,] N ) ) |
| 21 | cncff | |- ( ( x e. ( M [,] N ) |-> A ) e. ( ( M [,] N ) -cn-> CC ) -> ( x e. ( M [,] N ) |-> A ) : ( M [,] N ) --> CC ) |
|
| 22 | 2 21 | syl | |- ( ph -> ( x e. ( M [,] N ) |-> A ) : ( M [,] N ) --> CC ) |
| 23 | eqid | |- ( x e. ( M [,] N ) |-> A ) = ( x e. ( M [,] N ) |-> A ) |
|
| 24 | 23 | fmpt | |- ( A. x e. ( M [,] N ) A e. CC <-> ( x e. ( M [,] N ) |-> A ) : ( M [,] N ) --> CC ) |
| 25 | 22 24 | sylibr | |- ( ph -> A. x e. ( M [,] N ) A e. CC ) |
| 26 | nfcsb1v | |- F/_ x [_ y / x ]_ A |
|
| 27 | 26 | nfel1 | |- F/ x [_ y / x ]_ A e. CC |
| 28 | csbeq1a | |- ( x = y -> A = [_ y / x ]_ A ) |
|
| 29 | 28 | eleq1d | |- ( x = y -> ( A e. CC <-> [_ y / x ]_ A e. CC ) ) |
| 30 | 27 29 | rspc | |- ( y e. ( M [,] N ) -> ( A. x e. ( M [,] N ) A e. CC -> [_ y / x ]_ A e. CC ) ) |
| 31 | 25 30 | mpan9 | |- ( ( ph /\ y e. ( M [,] N ) ) -> [_ y / x ]_ A e. CC ) |
| 32 | 20 31 | syldan | |- ( ( ph /\ y e. ( M ... N ) ) -> [_ y / x ]_ A e. CC ) |
| 33 | 32 | ralrimiva | |- ( ph -> A. y e. ( M ... N ) [_ y / x ]_ A e. CC ) |
| 34 | fzofzp1 | |- ( k e. ( M ..^ N ) -> ( k + 1 ) e. ( M ... N ) ) |
|
| 35 | csbeq1 | |- ( y = ( k + 1 ) -> [_ y / x ]_ A = [_ ( k + 1 ) / x ]_ A ) |
|
| 36 | 35 | eleq1d | |- ( y = ( k + 1 ) -> ( [_ y / x ]_ A e. CC <-> [_ ( k + 1 ) / x ]_ A e. CC ) ) |
| 37 | 36 | rspccva | |- ( ( A. y e. ( M ... N ) [_ y / x ]_ A e. CC /\ ( k + 1 ) e. ( M ... N ) ) -> [_ ( k + 1 ) / x ]_ A e. CC ) |
| 38 | 33 34 37 | syl2an | |- ( ( ph /\ k e. ( M ..^ N ) ) -> [_ ( k + 1 ) / x ]_ A e. CC ) |
| 39 | elfzofz | |- ( k e. ( M ..^ N ) -> k e. ( M ... N ) ) |
|
| 40 | csbeq1 | |- ( y = k -> [_ y / x ]_ A = [_ k / x ]_ A ) |
|
| 41 | 40 | eleq1d | |- ( y = k -> ( [_ y / x ]_ A e. CC <-> [_ k / x ]_ A e. CC ) ) |
| 42 | 41 | rspccva | |- ( ( A. y e. ( M ... N ) [_ y / x ]_ A e. CC /\ k e. ( M ... N ) ) -> [_ k / x ]_ A e. CC ) |
| 43 | 33 39 42 | syl2an | |- ( ( ph /\ k e. ( M ..^ N ) ) -> [_ k / x ]_ A e. CC ) |
| 44 | 38 43 | subcld | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) e. CC ) |
| 45 | 11 7 44 | fsumsub | |- ( ph -> sum_ k e. ( M ..^ N ) ( X - ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) ) = ( sum_ k e. ( M ..^ N ) X - sum_ k e. ( M ..^ N ) ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) ) ) |
| 46 | vex | |- y e. _V |
|
| 47 | 46 | a1i | |- ( y = M -> y e. _V ) |
| 48 | eqeq2 | |- ( y = M -> ( x = y <-> x = M ) ) |
|
| 49 | 48 | biimpa | |- ( ( y = M /\ x = y ) -> x = M ) |
| 50 | 49 5 | syl | |- ( ( y = M /\ x = y ) -> A = C ) |
| 51 | 47 50 | csbied | |- ( y = M -> [_ y / x ]_ A = C ) |
| 52 | 46 | a1i | |- ( y = N -> y e. _V ) |
| 53 | eqeq2 | |- ( y = N -> ( x = y <-> x = N ) ) |
|
| 54 | 53 | biimpa | |- ( ( y = N /\ x = y ) -> x = N ) |
| 55 | 54 6 | syl | |- ( ( y = N /\ x = y ) -> A = D ) |
| 56 | 52 55 | csbied | |- ( y = N -> [_ y / x ]_ A = D ) |
| 57 | 40 35 51 56 1 32 | telfsumo2 | |- ( ph -> sum_ k e. ( M ..^ N ) ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) = ( D - C ) ) |
| 58 | 57 | oveq2d | |- ( ph -> ( sum_ k e. ( M ..^ N ) X - sum_ k e. ( M ..^ N ) ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) ) = ( sum_ k e. ( M ..^ N ) X - ( D - C ) ) ) |
| 59 | 45 58 | eqtrd | |- ( ph -> sum_ k e. ( M ..^ N ) ( X - ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) ) = ( sum_ k e. ( M ..^ N ) X - ( D - C ) ) ) |
| 60 | 59 | fveq2d | |- ( ph -> ( abs ` sum_ k e. ( M ..^ N ) ( X - ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) ) ) = ( abs ` ( sum_ k e. ( M ..^ N ) X - ( D - C ) ) ) ) |
| 61 | 7 44 | subcld | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( X - ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) ) e. CC ) |
| 62 | 11 61 | fsumcl | |- ( ph -> sum_ k e. ( M ..^ N ) ( X - ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) ) e. CC ) |
| 63 | 62 | abscld | |- ( ph -> ( abs ` sum_ k e. ( M ..^ N ) ( X - ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) ) ) e. RR ) |
| 64 | 61 | abscld | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( abs ` ( X - ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) ) ) e. RR ) |
| 65 | 11 64 | fsumrecl | |- ( ph -> sum_ k e. ( M ..^ N ) ( abs ` ( X - ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) ) ) e. RR ) |
| 66 | 11 8 | fsumrecl | |- ( ph -> sum_ k e. ( M ..^ N ) Y e. RR ) |
| 67 | 11 61 | fsumabs | |- ( ph -> ( abs ` sum_ k e. ( M ..^ N ) ( X - ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) ) ) <_ sum_ k e. ( M ..^ N ) ( abs ` ( X - ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) ) ) ) |
| 68 | elfzoelz | |- ( k e. ( M ..^ N ) -> k e. ZZ ) |
|
| 69 | 68 | adantl | |- ( ( ph /\ k e. ( M ..^ N ) ) -> k e. ZZ ) |
| 70 | 69 | zred | |- ( ( ph /\ k e. ( M ..^ N ) ) -> k e. RR ) |
| 71 | 70 | rexrd | |- ( ( ph /\ k e. ( M ..^ N ) ) -> k e. RR* ) |
| 72 | peano2re | |- ( k e. RR -> ( k + 1 ) e. RR ) |
|
| 73 | 70 72 | syl | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( k + 1 ) e. RR ) |
| 74 | 73 | rexrd | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( k + 1 ) e. RR* ) |
| 75 | 70 | lep1d | |- ( ( ph /\ k e. ( M ..^ N ) ) -> k <_ ( k + 1 ) ) |
| 76 | ubicc2 | |- ( ( k e. RR* /\ ( k + 1 ) e. RR* /\ k <_ ( k + 1 ) ) -> ( k + 1 ) e. ( k [,] ( k + 1 ) ) ) |
|
| 77 | 71 74 75 76 | syl3anc | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( k + 1 ) e. ( k [,] ( k + 1 ) ) ) |
| 78 | lbicc2 | |- ( ( k e. RR* /\ ( k + 1 ) e. RR* /\ k <_ ( k + 1 ) ) -> k e. ( k [,] ( k + 1 ) ) ) |
|
| 79 | 71 74 75 78 | syl3anc | |- ( ( ph /\ k e. ( M ..^ N ) ) -> k e. ( k [,] ( k + 1 ) ) ) |
| 80 | 13 | zred | |- ( ph -> M e. RR ) |
| 81 | 80 | adantr | |- ( ( ph /\ k e. ( M ..^ N ) ) -> M e. RR ) |
| 82 | 15 | zred | |- ( ph -> N e. RR ) |
| 83 | 82 | adantr | |- ( ( ph /\ k e. ( M ..^ N ) ) -> N e. RR ) |
| 84 | elfzole1 | |- ( k e. ( M ..^ N ) -> M <_ k ) |
|
| 85 | 84 | adantl | |- ( ( ph /\ k e. ( M ..^ N ) ) -> M <_ k ) |
| 86 | 34 | adantl | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( k + 1 ) e. ( M ... N ) ) |
| 87 | elfzle2 | |- ( ( k + 1 ) e. ( M ... N ) -> ( k + 1 ) <_ N ) |
|
| 88 | 86 87 | syl | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( k + 1 ) <_ N ) |
| 89 | iccss | |- ( ( ( M e. RR /\ N e. RR ) /\ ( M <_ k /\ ( k + 1 ) <_ N ) ) -> ( k [,] ( k + 1 ) ) C_ ( M [,] N ) ) |
|
| 90 | 81 83 85 88 89 | syl22anc | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( k [,] ( k + 1 ) ) C_ ( M [,] N ) ) |
| 91 | 90 | resmptd | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( ( x e. ( M [,] N ) |-> ( ( X x. x ) - A ) ) |` ( k [,] ( k + 1 ) ) ) = ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ) |
| 92 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 93 | 92 | subcn | |- - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
| 94 | 93 | a1i | |- ( ( ph /\ k e. ( M ..^ N ) ) -> - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 95 | iccssre | |- ( ( M e. RR /\ N e. RR ) -> ( M [,] N ) C_ RR ) |
|
| 96 | 80 82 95 | syl2anc | |- ( ph -> ( M [,] N ) C_ RR ) |
| 97 | 96 | adantr | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( M [,] N ) C_ RR ) |
| 98 | ax-resscn | |- RR C_ CC |
|
| 99 | 97 98 | sstrdi | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( M [,] N ) C_ CC ) |
| 100 | ssid | |- CC C_ CC |
|
| 101 | 100 | a1i | |- ( ( ph /\ k e. ( M ..^ N ) ) -> CC C_ CC ) |
| 102 | cncfmptc | |- ( ( X e. CC /\ ( M [,] N ) C_ CC /\ CC C_ CC ) -> ( x e. ( M [,] N ) |-> X ) e. ( ( M [,] N ) -cn-> CC ) ) |
|
| 103 | 7 99 101 102 | syl3anc | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( x e. ( M [,] N ) |-> X ) e. ( ( M [,] N ) -cn-> CC ) ) |
| 104 | cncfmptid | |- ( ( ( M [,] N ) C_ CC /\ CC C_ CC ) -> ( x e. ( M [,] N ) |-> x ) e. ( ( M [,] N ) -cn-> CC ) ) |
|
| 105 | 99 100 104 | sylancl | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( x e. ( M [,] N ) |-> x ) e. ( ( M [,] N ) -cn-> CC ) ) |
| 106 | 103 105 | mulcncf | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( x e. ( M [,] N ) |-> ( X x. x ) ) e. ( ( M [,] N ) -cn-> CC ) ) |
| 107 | 2 | adantr | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( x e. ( M [,] N ) |-> A ) e. ( ( M [,] N ) -cn-> CC ) ) |
| 108 | 92 94 106 107 | cncfmpt2f | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( x e. ( M [,] N ) |-> ( ( X x. x ) - A ) ) e. ( ( M [,] N ) -cn-> CC ) ) |
| 109 | rescncf | |- ( ( k [,] ( k + 1 ) ) C_ ( M [,] N ) -> ( ( x e. ( M [,] N ) |-> ( ( X x. x ) - A ) ) e. ( ( M [,] N ) -cn-> CC ) -> ( ( x e. ( M [,] N ) |-> ( ( X x. x ) - A ) ) |` ( k [,] ( k + 1 ) ) ) e. ( ( k [,] ( k + 1 ) ) -cn-> CC ) ) ) |
|
| 110 | 90 108 109 | sylc | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( ( x e. ( M [,] N ) |-> ( ( X x. x ) - A ) ) |` ( k [,] ( k + 1 ) ) ) e. ( ( k [,] ( k + 1 ) ) -cn-> CC ) ) |
| 111 | 91 110 | eqeltrrd | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) e. ( ( k [,] ( k + 1 ) ) -cn-> CC ) ) |
| 112 | 98 | a1i | |- ( ( ph /\ k e. ( M ..^ N ) ) -> RR C_ CC ) |
| 113 | 90 97 | sstrd | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( k [,] ( k + 1 ) ) C_ RR ) |
| 114 | 90 | sselda | |- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( k [,] ( k + 1 ) ) ) -> x e. ( M [,] N ) ) |
| 115 | 7 | adantr | |- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( M [,] N ) ) -> X e. CC ) |
| 116 | 99 | sselda | |- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( M [,] N ) ) -> x e. CC ) |
| 117 | 115 116 | mulcld | |- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( M [,] N ) ) -> ( X x. x ) e. CC ) |
| 118 | 25 | r19.21bi | |- ( ( ph /\ x e. ( M [,] N ) ) -> A e. CC ) |
| 119 | 118 | adantlr | |- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( M [,] N ) ) -> A e. CC ) |
| 120 | 117 119 | subcld | |- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( M [,] N ) ) -> ( ( X x. x ) - A ) e. CC ) |
| 121 | 114 120 | syldan | |- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( k [,] ( k + 1 ) ) ) -> ( ( X x. x ) - A ) e. CC ) |
| 122 | tgioo4 | |- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
|
| 123 | iccntr | |- ( ( k e. RR /\ ( k + 1 ) e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( k [,] ( k + 1 ) ) ) = ( k (,) ( k + 1 ) ) ) |
|
| 124 | 70 73 123 | syl2anc | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( k [,] ( k + 1 ) ) ) = ( k (,) ( k + 1 ) ) ) |
| 125 | 112 113 121 122 92 124 | dvmptntr | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( RR _D ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ) = ( RR _D ( x e. ( k (,) ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ) ) |
| 126 | reelprrecn | |- RR e. { RR , CC } |
|
| 127 | 126 | a1i | |- ( ( ph /\ k e. ( M ..^ N ) ) -> RR e. { RR , CC } ) |
| 128 | ioossicc | |- ( M (,) N ) C_ ( M [,] N ) |
|
| 129 | 128 | sseli | |- ( x e. ( M (,) N ) -> x e. ( M [,] N ) ) |
| 130 | 129 120 | sylan2 | |- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( M (,) N ) ) -> ( ( X x. x ) - A ) e. CC ) |
| 131 | ovex | |- ( X - B ) e. _V |
|
| 132 | 131 | a1i | |- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( M (,) N ) ) -> ( X - B ) e. _V ) |
| 133 | 129 117 | sylan2 | |- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( M (,) N ) ) -> ( X x. x ) e. CC ) |
| 134 | 7 | adantr | |- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( M (,) N ) ) -> X e. CC ) |
| 135 | 128 99 | sstrid | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( M (,) N ) C_ CC ) |
| 136 | 135 | sselda | |- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( M (,) N ) ) -> x e. CC ) |
| 137 | 1cnd | |- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( M (,) N ) ) -> 1 e. CC ) |
|
| 138 | 112 | sselda | |- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. RR ) -> x e. CC ) |
| 139 | 1cnd | |- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. RR ) -> 1 e. CC ) |
|
| 140 | 127 | dvmptid | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( RR _D ( x e. RR |-> x ) ) = ( x e. RR |-> 1 ) ) |
| 141 | 128 97 | sstrid | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( M (,) N ) C_ RR ) |
| 142 | iooretop | |- ( M (,) N ) e. ( topGen ` ran (,) ) |
|
| 143 | 142 | a1i | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( M (,) N ) e. ( topGen ` ran (,) ) ) |
| 144 | 127 138 139 140 141 122 92 143 | dvmptres | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( RR _D ( x e. ( M (,) N ) |-> x ) ) = ( x e. ( M (,) N ) |-> 1 ) ) |
| 145 | 127 136 137 144 7 | dvmptcmul | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( RR _D ( x e. ( M (,) N ) |-> ( X x. x ) ) ) = ( x e. ( M (,) N ) |-> ( X x. 1 ) ) ) |
| 146 | 7 | mulridd | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( X x. 1 ) = X ) |
| 147 | 146 | mpteq2dv | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( x e. ( M (,) N ) |-> ( X x. 1 ) ) = ( x e. ( M (,) N ) |-> X ) ) |
| 148 | 145 147 | eqtrd | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( RR _D ( x e. ( M (,) N ) |-> ( X x. x ) ) ) = ( x e. ( M (,) N ) |-> X ) ) |
| 149 | 129 119 | sylan2 | |- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( M (,) N ) ) -> A e. CC ) |
| 150 | 3 | adantlr | |- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( M (,) N ) ) -> B e. V ) |
| 151 | 4 | adantr | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( RR _D ( x e. ( M (,) N ) |-> A ) ) = ( x e. ( M (,) N ) |-> B ) ) |
| 152 | 127 133 134 148 149 150 151 | dvmptsub | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( RR _D ( x e. ( M (,) N ) |-> ( ( X x. x ) - A ) ) ) = ( x e. ( M (,) N ) |-> ( X - B ) ) ) |
| 153 | 81 | rexrd | |- ( ( ph /\ k e. ( M ..^ N ) ) -> M e. RR* ) |
| 154 | iooss1 | |- ( ( M e. RR* /\ M <_ k ) -> ( k (,) ( k + 1 ) ) C_ ( M (,) ( k + 1 ) ) ) |
|
| 155 | 153 85 154 | syl2anc | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( k (,) ( k + 1 ) ) C_ ( M (,) ( k + 1 ) ) ) |
| 156 | 83 | rexrd | |- ( ( ph /\ k e. ( M ..^ N ) ) -> N e. RR* ) |
| 157 | iooss2 | |- ( ( N e. RR* /\ ( k + 1 ) <_ N ) -> ( M (,) ( k + 1 ) ) C_ ( M (,) N ) ) |
|
| 158 | 156 88 157 | syl2anc | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( M (,) ( k + 1 ) ) C_ ( M (,) N ) ) |
| 159 | 155 158 | sstrd | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( k (,) ( k + 1 ) ) C_ ( M (,) N ) ) |
| 160 | iooretop | |- ( k (,) ( k + 1 ) ) e. ( topGen ` ran (,) ) |
|
| 161 | 160 | a1i | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( k (,) ( k + 1 ) ) e. ( topGen ` ran (,) ) ) |
| 162 | 127 130 132 152 159 122 92 161 | dvmptres | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( RR _D ( x e. ( k (,) ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ) = ( x e. ( k (,) ( k + 1 ) ) |-> ( X - B ) ) ) |
| 163 | 125 162 | eqtrd | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( RR _D ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ) = ( x e. ( k (,) ( k + 1 ) ) |-> ( X - B ) ) ) |
| 164 | 163 | dmeqd | |- ( ( ph /\ k e. ( M ..^ N ) ) -> dom ( RR _D ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ) = dom ( x e. ( k (,) ( k + 1 ) ) |-> ( X - B ) ) ) |
| 165 | eqid | |- ( x e. ( k (,) ( k + 1 ) ) |-> ( X - B ) ) = ( x e. ( k (,) ( k + 1 ) ) |-> ( X - B ) ) |
|
| 166 | 131 165 | dmmpti | |- dom ( x e. ( k (,) ( k + 1 ) ) |-> ( X - B ) ) = ( k (,) ( k + 1 ) ) |
| 167 | 164 166 | eqtrdi | |- ( ( ph /\ k e. ( M ..^ N ) ) -> dom ( RR _D ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ) = ( k (,) ( k + 1 ) ) ) |
| 168 | 163 | adantr | |- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( k (,) ( k + 1 ) ) ) -> ( RR _D ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ) = ( x e. ( k (,) ( k + 1 ) ) |-> ( X - B ) ) ) |
| 169 | 168 | fveq1d | |- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( k (,) ( k + 1 ) ) ) -> ( ( RR _D ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ) ` x ) = ( ( x e. ( k (,) ( k + 1 ) ) |-> ( X - B ) ) ` x ) ) |
| 170 | simpr | |- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( k (,) ( k + 1 ) ) ) -> x e. ( k (,) ( k + 1 ) ) ) |
|
| 171 | 165 | fvmpt2 | |- ( ( x e. ( k (,) ( k + 1 ) ) /\ ( X - B ) e. _V ) -> ( ( x e. ( k (,) ( k + 1 ) ) |-> ( X - B ) ) ` x ) = ( X - B ) ) |
| 172 | 170 131 171 | sylancl | |- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( k (,) ( k + 1 ) ) ) -> ( ( x e. ( k (,) ( k + 1 ) ) |-> ( X - B ) ) ` x ) = ( X - B ) ) |
| 173 | 169 172 | eqtrd | |- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( k (,) ( k + 1 ) ) ) -> ( ( RR _D ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ) ` x ) = ( X - B ) ) |
| 174 | 173 | fveq2d | |- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( k (,) ( k + 1 ) ) ) -> ( abs ` ( ( RR _D ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ) ` x ) ) = ( abs ` ( X - B ) ) ) |
| 175 | 9 | anassrs | |- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( k (,) ( k + 1 ) ) ) -> ( abs ` ( X - B ) ) <_ Y ) |
| 176 | 174 175 | eqbrtrd | |- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( k (,) ( k + 1 ) ) ) -> ( abs ` ( ( RR _D ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ) ` x ) ) <_ Y ) |
| 177 | 176 | ralrimiva | |- ( ( ph /\ k e. ( M ..^ N ) ) -> A. x e. ( k (,) ( k + 1 ) ) ( abs ` ( ( RR _D ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ) ` x ) ) <_ Y ) |
| 178 | nfcv | |- F/_ x abs |
|
| 179 | nfcv | |- F/_ x RR |
|
| 180 | nfcv | |- F/_ x _D |
|
| 181 | nfmpt1 | |- F/_ x ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) |
|
| 182 | 179 180 181 | nfov | |- F/_ x ( RR _D ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ) |
| 183 | nfcv | |- F/_ x y |
|
| 184 | 182 183 | nffv | |- F/_ x ( ( RR _D ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ) ` y ) |
| 185 | 178 184 | nffv | |- F/_ x ( abs ` ( ( RR _D ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ) ` y ) ) |
| 186 | nfcv | |- F/_ x <_ |
|
| 187 | nfcv | |- F/_ x Y |
|
| 188 | 185 186 187 | nfbr | |- F/ x ( abs ` ( ( RR _D ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ) ` y ) ) <_ Y |
| 189 | 2fveq3 | |- ( x = y -> ( abs ` ( ( RR _D ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ) ` x ) ) = ( abs ` ( ( RR _D ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ) ` y ) ) ) |
|
| 190 | 189 | breq1d | |- ( x = y -> ( ( abs ` ( ( RR _D ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ) ` x ) ) <_ Y <-> ( abs ` ( ( RR _D ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ) ` y ) ) <_ Y ) ) |
| 191 | 188 190 | rspc | |- ( y e. ( k (,) ( k + 1 ) ) -> ( A. x e. ( k (,) ( k + 1 ) ) ( abs ` ( ( RR _D ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ) ` x ) ) <_ Y -> ( abs ` ( ( RR _D ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ) ` y ) ) <_ Y ) ) |
| 192 | 177 191 | mpan9 | |- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ y e. ( k (,) ( k + 1 ) ) ) -> ( abs ` ( ( RR _D ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ) ` y ) ) <_ Y ) |
| 193 | 70 73 111 167 8 192 | dvlip | |- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ ( ( k + 1 ) e. ( k [,] ( k + 1 ) ) /\ k e. ( k [,] ( k + 1 ) ) ) ) -> ( abs ` ( ( ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ` ( k + 1 ) ) - ( ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ` k ) ) ) <_ ( Y x. ( abs ` ( ( k + 1 ) - k ) ) ) ) |
| 194 | 193 | ex | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( ( ( k + 1 ) e. ( k [,] ( k + 1 ) ) /\ k e. ( k [,] ( k + 1 ) ) ) -> ( abs ` ( ( ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ` ( k + 1 ) ) - ( ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ` k ) ) ) <_ ( Y x. ( abs ` ( ( k + 1 ) - k ) ) ) ) ) |
| 195 | 77 79 194 | mp2and | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( abs ` ( ( ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ` ( k + 1 ) ) - ( ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ` k ) ) ) <_ ( Y x. ( abs ` ( ( k + 1 ) - k ) ) ) ) |
| 196 | ovex | |- ( ( X x. ( k + 1 ) ) - [_ ( k + 1 ) / x ]_ A ) e. _V |
|
| 197 | nfcv | |- F/_ x ( k + 1 ) |
|
| 198 | nfcv | |- F/_ x ( X x. ( k + 1 ) ) |
|
| 199 | nfcv | |- F/_ x - |
|
| 200 | nfcsb1v | |- F/_ x [_ ( k + 1 ) / x ]_ A |
|
| 201 | 198 199 200 | nfov | |- F/_ x ( ( X x. ( k + 1 ) ) - [_ ( k + 1 ) / x ]_ A ) |
| 202 | oveq2 | |- ( x = ( k + 1 ) -> ( X x. x ) = ( X x. ( k + 1 ) ) ) |
|
| 203 | csbeq1a | |- ( x = ( k + 1 ) -> A = [_ ( k + 1 ) / x ]_ A ) |
|
| 204 | 202 203 | oveq12d | |- ( x = ( k + 1 ) -> ( ( X x. x ) - A ) = ( ( X x. ( k + 1 ) ) - [_ ( k + 1 ) / x ]_ A ) ) |
| 205 | eqid | |- ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) = ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) |
|
| 206 | 197 201 204 205 | fvmptf | |- ( ( ( k + 1 ) e. ( k [,] ( k + 1 ) ) /\ ( ( X x. ( k + 1 ) ) - [_ ( k + 1 ) / x ]_ A ) e. _V ) -> ( ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ` ( k + 1 ) ) = ( ( X x. ( k + 1 ) ) - [_ ( k + 1 ) / x ]_ A ) ) |
| 207 | 77 196 206 | sylancl | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ` ( k + 1 ) ) = ( ( X x. ( k + 1 ) ) - [_ ( k + 1 ) / x ]_ A ) ) |
| 208 | 70 | recnd | |- ( ( ph /\ k e. ( M ..^ N ) ) -> k e. CC ) |
| 209 | 7 208 | mulcld | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( X x. k ) e. CC ) |
| 210 | 209 43 | subcld | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( ( X x. k ) - [_ k / x ]_ A ) e. CC ) |
| 211 | nfcv | |- F/_ x k |
|
| 212 | nfcv | |- F/_ x ( X x. k ) |
|
| 213 | nfcsb1v | |- F/_ x [_ k / x ]_ A |
|
| 214 | 212 199 213 | nfov | |- F/_ x ( ( X x. k ) - [_ k / x ]_ A ) |
| 215 | oveq2 | |- ( x = k -> ( X x. x ) = ( X x. k ) ) |
|
| 216 | csbeq1a | |- ( x = k -> A = [_ k / x ]_ A ) |
|
| 217 | 215 216 | oveq12d | |- ( x = k -> ( ( X x. x ) - A ) = ( ( X x. k ) - [_ k / x ]_ A ) ) |
| 218 | 211 214 217 205 | fvmptf | |- ( ( k e. ( k [,] ( k + 1 ) ) /\ ( ( X x. k ) - [_ k / x ]_ A ) e. CC ) -> ( ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ` k ) = ( ( X x. k ) - [_ k / x ]_ A ) ) |
| 219 | 79 210 218 | syl2anc | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ` k ) = ( ( X x. k ) - [_ k / x ]_ A ) ) |
| 220 | 207 219 | oveq12d | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( ( ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ` ( k + 1 ) ) - ( ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ` k ) ) = ( ( ( X x. ( k + 1 ) ) - [_ ( k + 1 ) / x ]_ A ) - ( ( X x. k ) - [_ k / x ]_ A ) ) ) |
| 221 | peano2cn | |- ( k e. CC -> ( k + 1 ) e. CC ) |
|
| 222 | 208 221 | syl | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( k + 1 ) e. CC ) |
| 223 | 7 222 | mulcld | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( X x. ( k + 1 ) ) e. CC ) |
| 224 | 223 209 38 43 | sub4d | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( ( ( X x. ( k + 1 ) ) - ( X x. k ) ) - ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) ) = ( ( ( X x. ( k + 1 ) ) - [_ ( k + 1 ) / x ]_ A ) - ( ( X x. k ) - [_ k / x ]_ A ) ) ) |
| 225 | 1cnd | |- ( ( ph /\ k e. ( M ..^ N ) ) -> 1 e. CC ) |
|
| 226 | 208 225 | pncan2d | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( ( k + 1 ) - k ) = 1 ) |
| 227 | 226 | oveq2d | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( X x. ( ( k + 1 ) - k ) ) = ( X x. 1 ) ) |
| 228 | 7 222 208 | subdid | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( X x. ( ( k + 1 ) - k ) ) = ( ( X x. ( k + 1 ) ) - ( X x. k ) ) ) |
| 229 | 227 228 146 | 3eqtr3d | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( ( X x. ( k + 1 ) ) - ( X x. k ) ) = X ) |
| 230 | 229 | oveq1d | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( ( ( X x. ( k + 1 ) ) - ( X x. k ) ) - ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) ) = ( X - ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) ) ) |
| 231 | 220 224 230 | 3eqtr2rd | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( X - ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) ) = ( ( ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ` ( k + 1 ) ) - ( ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ` k ) ) ) |
| 232 | 231 | fveq2d | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( abs ` ( X - ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) ) ) = ( abs ` ( ( ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ` ( k + 1 ) ) - ( ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ` k ) ) ) ) |
| 233 | 226 | fveq2d | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( abs ` ( ( k + 1 ) - k ) ) = ( abs ` 1 ) ) |
| 234 | abs1 | |- ( abs ` 1 ) = 1 |
|
| 235 | 233 234 | eqtrdi | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( abs ` ( ( k + 1 ) - k ) ) = 1 ) |
| 236 | 235 | oveq2d | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( Y x. ( abs ` ( ( k + 1 ) - k ) ) ) = ( Y x. 1 ) ) |
| 237 | 8 | recnd | |- ( ( ph /\ k e. ( M ..^ N ) ) -> Y e. CC ) |
| 238 | 237 | mulridd | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( Y x. 1 ) = Y ) |
| 239 | 236 238 | eqtr2d | |- ( ( ph /\ k e. ( M ..^ N ) ) -> Y = ( Y x. ( abs ` ( ( k + 1 ) - k ) ) ) ) |
| 240 | 195 232 239 | 3brtr4d | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( abs ` ( X - ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) ) ) <_ Y ) |
| 241 | 11 64 8 240 | fsumle | |- ( ph -> sum_ k e. ( M ..^ N ) ( abs ` ( X - ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) ) ) <_ sum_ k e. ( M ..^ N ) Y ) |
| 242 | 63 65 66 67 241 | letrd | |- ( ph -> ( abs ` sum_ k e. ( M ..^ N ) ( X - ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) ) ) <_ sum_ k e. ( M ..^ N ) Y ) |
| 243 | 60 242 | eqbrtrrd | |- ( ph -> ( abs ` ( sum_ k e. ( M ..^ N ) X - ( D - C ) ) ) <_ sum_ k e. ( M ..^ N ) Y ) |