This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Sum of a telescoping series. (Contributed by Mario Carneiro, 2-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | telfsumo.1 | |- ( k = j -> A = B ) |
|
| telfsumo.2 | |- ( k = ( j + 1 ) -> A = C ) |
||
| telfsumo.3 | |- ( k = M -> A = D ) |
||
| telfsumo.4 | |- ( k = N -> A = E ) |
||
| telfsumo.5 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
||
| telfsumo.6 | |- ( ( ph /\ k e. ( M ... N ) ) -> A e. CC ) |
||
| Assertion | telfsumo2 | |- ( ph -> sum_ j e. ( M ..^ N ) ( C - B ) = ( E - D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | telfsumo.1 | |- ( k = j -> A = B ) |
|
| 2 | telfsumo.2 | |- ( k = ( j + 1 ) -> A = C ) |
|
| 3 | telfsumo.3 | |- ( k = M -> A = D ) |
|
| 4 | telfsumo.4 | |- ( k = N -> A = E ) |
|
| 5 | telfsumo.5 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
|
| 6 | telfsumo.6 | |- ( ( ph /\ k e. ( M ... N ) ) -> A e. CC ) |
|
| 7 | 1 | negeqd | |- ( k = j -> -u A = -u B ) |
| 8 | 2 | negeqd | |- ( k = ( j + 1 ) -> -u A = -u C ) |
| 9 | 3 | negeqd | |- ( k = M -> -u A = -u D ) |
| 10 | 4 | negeqd | |- ( k = N -> -u A = -u E ) |
| 11 | 6 | negcld | |- ( ( ph /\ k e. ( M ... N ) ) -> -u A e. CC ) |
| 12 | 7 8 9 10 5 11 | telfsumo | |- ( ph -> sum_ j e. ( M ..^ N ) ( -u B - -u C ) = ( -u D - -u E ) ) |
| 13 | 6 | ralrimiva | |- ( ph -> A. k e. ( M ... N ) A e. CC ) |
| 14 | elfzofz | |- ( j e. ( M ..^ N ) -> j e. ( M ... N ) ) |
|
| 15 | 1 | eleq1d | |- ( k = j -> ( A e. CC <-> B e. CC ) ) |
| 16 | 15 | rspccva | |- ( ( A. k e. ( M ... N ) A e. CC /\ j e. ( M ... N ) ) -> B e. CC ) |
| 17 | 13 14 16 | syl2an | |- ( ( ph /\ j e. ( M ..^ N ) ) -> B e. CC ) |
| 18 | fzofzp1 | |- ( j e. ( M ..^ N ) -> ( j + 1 ) e. ( M ... N ) ) |
|
| 19 | 2 | eleq1d | |- ( k = ( j + 1 ) -> ( A e. CC <-> C e. CC ) ) |
| 20 | 19 | rspccva | |- ( ( A. k e. ( M ... N ) A e. CC /\ ( j + 1 ) e. ( M ... N ) ) -> C e. CC ) |
| 21 | 13 18 20 | syl2an | |- ( ( ph /\ j e. ( M ..^ N ) ) -> C e. CC ) |
| 22 | 17 21 | neg2subd | |- ( ( ph /\ j e. ( M ..^ N ) ) -> ( -u B - -u C ) = ( C - B ) ) |
| 23 | 22 | sumeq2dv | |- ( ph -> sum_ j e. ( M ..^ N ) ( -u B - -u C ) = sum_ j e. ( M ..^ N ) ( C - B ) ) |
| 24 | 3 | eleq1d | |- ( k = M -> ( A e. CC <-> D e. CC ) ) |
| 25 | eluzfz1 | |- ( N e. ( ZZ>= ` M ) -> M e. ( M ... N ) ) |
|
| 26 | 5 25 | syl | |- ( ph -> M e. ( M ... N ) ) |
| 27 | 24 13 26 | rspcdva | |- ( ph -> D e. CC ) |
| 28 | 4 | eleq1d | |- ( k = N -> ( A e. CC <-> E e. CC ) ) |
| 29 | eluzfz2 | |- ( N e. ( ZZ>= ` M ) -> N e. ( M ... N ) ) |
|
| 30 | 5 29 | syl | |- ( ph -> N e. ( M ... N ) ) |
| 31 | 28 13 30 | rspcdva | |- ( ph -> E e. CC ) |
| 32 | 27 31 | neg2subd | |- ( ph -> ( -u D - -u E ) = ( E - D ) ) |
| 33 | 12 23 32 | 3eqtr3d | |- ( ph -> sum_ j e. ( M ..^ N ) ( C - B ) = ( E - D ) ) |