This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted specialization, using implicit substitution. (Contributed by NM, 19-Apr-2005) (Revised by Mario Carneiro, 11-Oct-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rspc.1 | |- F/ x ps |
|
| rspc.2 | |- ( x = A -> ( ph <-> ps ) ) |
||
| Assertion | rspc | |- ( A e. B -> ( A. x e. B ph -> ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspc.1 | |- F/ x ps |
|
| 2 | rspc.2 | |- ( x = A -> ( ph <-> ps ) ) |
|
| 3 | df-ral | |- ( A. x e. B ph <-> A. x ( x e. B -> ph ) ) |
|
| 4 | nfcv | |- F/_ x A |
|
| 5 | nfv | |- F/ x A e. B |
|
| 6 | 5 1 | nfim | |- F/ x ( A e. B -> ps ) |
| 7 | eleq1 | |- ( x = A -> ( x e. B <-> A e. B ) ) |
|
| 8 | 7 2 | imbi12d | |- ( x = A -> ( ( x e. B -> ph ) <-> ( A e. B -> ps ) ) ) |
| 9 | 4 6 8 | spcgf | |- ( A e. B -> ( A. x ( x e. B -> ph ) -> ( A e. B -> ps ) ) ) |
| 10 | 9 | pm2.43a | |- ( A e. B -> ( A. x ( x e. B -> ph ) -> ps ) ) |
| 11 | 3 10 | biimtrid | |- ( A e. B -> ( A. x e. B ph -> ps ) ) |