This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An alternative way of expressing a finite set of sequential integers. (Contributed by Mario Carneiro, 3-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzval2 | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M ... N ) = ( ( M [,] N ) i^i ZZ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzval | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M ... N ) = { k e. ZZ | ( M <_ k /\ k <_ N ) } ) |
|
| 2 | zssre | |- ZZ C_ RR |
|
| 3 | ressxr | |- RR C_ RR* |
|
| 4 | 2 3 | sstri | |- ZZ C_ RR* |
| 5 | 4 | sseli | |- ( M e. ZZ -> M e. RR* ) |
| 6 | 4 | sseli | |- ( N e. ZZ -> N e. RR* ) |
| 7 | iccval | |- ( ( M e. RR* /\ N e. RR* ) -> ( M [,] N ) = { k e. RR* | ( M <_ k /\ k <_ N ) } ) |
|
| 8 | 5 6 7 | syl2an | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M [,] N ) = { k e. RR* | ( M <_ k /\ k <_ N ) } ) |
| 9 | 8 | ineq1d | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M [,] N ) i^i ZZ ) = ( { k e. RR* | ( M <_ k /\ k <_ N ) } i^i ZZ ) ) |
| 10 | inrab2 | |- ( { k e. RR* | ( M <_ k /\ k <_ N ) } i^i ZZ ) = { k e. ( RR* i^i ZZ ) | ( M <_ k /\ k <_ N ) } |
|
| 11 | sseqin2 | |- ( ZZ C_ RR* <-> ( RR* i^i ZZ ) = ZZ ) |
|
| 12 | 4 11 | mpbi | |- ( RR* i^i ZZ ) = ZZ |
| 13 | 12 | rabeqi | |- { k e. ( RR* i^i ZZ ) | ( M <_ k /\ k <_ N ) } = { k e. ZZ | ( M <_ k /\ k <_ N ) } |
| 14 | 10 13 | eqtri | |- ( { k e. RR* | ( M <_ k /\ k <_ N ) } i^i ZZ ) = { k e. ZZ | ( M <_ k /\ k <_ N ) } |
| 15 | 9 14 | eqtr2di | |- ( ( M e. ZZ /\ N e. ZZ ) -> { k e. ZZ | ( M <_ k /\ k <_ N ) } = ( ( M [,] N ) i^i ZZ ) ) |
| 16 | 1 15 | eqtrd | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M ... N ) = ( ( M [,] N ) i^i ZZ ) ) |