This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Real closure of a derivative. (Contributed by Mario Carneiro, 18-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvmptrecl.s | |- ( ph -> S C_ RR ) |
|
| dvmptrecl.a | |- ( ( ph /\ x e. S ) -> A e. RR ) |
||
| dvmptrecl.v | |- ( ( ph /\ x e. S ) -> B e. V ) |
||
| dvmptrecl.b | |- ( ph -> ( RR _D ( x e. S |-> A ) ) = ( x e. S |-> B ) ) |
||
| Assertion | dvmptrecl | |- ( ( ph /\ x e. S ) -> B e. RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvmptrecl.s | |- ( ph -> S C_ RR ) |
|
| 2 | dvmptrecl.a | |- ( ( ph /\ x e. S ) -> A e. RR ) |
|
| 3 | dvmptrecl.v | |- ( ( ph /\ x e. S ) -> B e. V ) |
|
| 4 | dvmptrecl.b | |- ( ph -> ( RR _D ( x e. S |-> A ) ) = ( x e. S |-> B ) ) |
|
| 5 | 2 | fmpttd | |- ( ph -> ( x e. S |-> A ) : S --> RR ) |
| 6 | dvfre | |- ( ( ( x e. S |-> A ) : S --> RR /\ S C_ RR ) -> ( RR _D ( x e. S |-> A ) ) : dom ( RR _D ( x e. S |-> A ) ) --> RR ) |
|
| 7 | 5 1 6 | syl2anc | |- ( ph -> ( RR _D ( x e. S |-> A ) ) : dom ( RR _D ( x e. S |-> A ) ) --> RR ) |
| 8 | 4 | dmeqd | |- ( ph -> dom ( RR _D ( x e. S |-> A ) ) = dom ( x e. S |-> B ) ) |
| 9 | 3 | ralrimiva | |- ( ph -> A. x e. S B e. V ) |
| 10 | dmmptg | |- ( A. x e. S B e. V -> dom ( x e. S |-> B ) = S ) |
|
| 11 | 9 10 | syl | |- ( ph -> dom ( x e. S |-> B ) = S ) |
| 12 | 8 11 | eqtrd | |- ( ph -> dom ( RR _D ( x e. S |-> A ) ) = S ) |
| 13 | 4 12 | feq12d | |- ( ph -> ( ( RR _D ( x e. S |-> A ) ) : dom ( RR _D ( x e. S |-> A ) ) --> RR <-> ( x e. S |-> B ) : S --> RR ) ) |
| 14 | 7 13 | mpbid | |- ( ph -> ( x e. S |-> B ) : S --> RR ) |
| 15 | 14 | fvmptelcdm | |- ( ( ph /\ x e. S ) -> B e. RR ) |