This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by Mario Carneiro, 2-Dec-2014) (Revised by Mario Carneiro, 13-Oct-2016) Reduce axiom usage. (Revised by GG, 15-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | csbied.1 | |- ( ph -> A e. V ) |
|
| csbied.2 | |- ( ( ph /\ x = A ) -> B = C ) |
||
| Assertion | csbied | |- ( ph -> [_ A / x ]_ B = C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbied.1 | |- ( ph -> A e. V ) |
|
| 2 | csbied.2 | |- ( ( ph /\ x = A ) -> B = C ) |
|
| 3 | df-csb | |- [_ A / x ]_ B = { y | [. A / x ]. y e. B } |
|
| 4 | 2 | eleq2d | |- ( ( ph /\ x = A ) -> ( z e. B <-> z e. C ) ) |
| 5 | 1 4 | sbcied | |- ( ph -> ( [. A / x ]. z e. B <-> z e. C ) ) |
| 6 | 5 | alrimiv | |- ( ph -> A. z ( [. A / x ]. z e. B <-> z e. C ) ) |
| 7 | df-clab | |- ( z e. { y | [. A / x ]. y e. B } <-> [ z / y ] [. A / x ]. y e. B ) |
|
| 8 | eleq1w | |- ( y = z -> ( y e. B <-> z e. B ) ) |
|
| 9 | 8 | sbcbidv | |- ( y = z -> ( [. A / x ]. y e. B <-> [. A / x ]. z e. B ) ) |
| 10 | 9 | sbievw | |- ( [ z / y ] [. A / x ]. y e. B <-> [. A / x ]. z e. B ) |
| 11 | 7 10 | bitr2i | |- ( [. A / x ]. z e. B <-> z e. { y | [. A / x ]. y e. B } ) |
| 12 | 11 | bibi1i | |- ( ( [. A / x ]. z e. B <-> z e. C ) <-> ( z e. { y | [. A / x ]. y e. B } <-> z e. C ) ) |
| 13 | 12 | biimpi | |- ( ( [. A / x ]. z e. B <-> z e. C ) -> ( z e. { y | [. A / x ]. y e. B } <-> z e. C ) ) |
| 14 | 6 13 | sylg | |- ( ph -> A. z ( z e. { y | [. A / x ]. y e. B } <-> z e. C ) ) |
| 15 | dfcleq | |- ( { y | [. A / x ]. y e. B } = C <-> A. z ( z e. { y | [. A / x ]. y e. B } <-> z e. C ) ) |
|
| 16 | 14 15 | sylibr | |- ( ph -> { y | [. A / x ]. y e. B } = C ) |
| 17 | 3 16 | eqtrid | |- ( ph -> [_ A / x ]_ B = C ) |