This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of a function given by an ordered-pair class abstraction. This version of fvmptg uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 8-Nov-2005) (Revised by Mario Carneiro, 15-Oct-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fvmptf.1 | |- F/_ x A |
|
| fvmptf.2 | |- F/_ x C |
||
| fvmptf.3 | |- ( x = A -> B = C ) |
||
| fvmptf.4 | |- F = ( x e. D |-> B ) |
||
| Assertion | fvmptf | |- ( ( A e. D /\ C e. V ) -> ( F ` A ) = C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvmptf.1 | |- F/_ x A |
|
| 2 | fvmptf.2 | |- F/_ x C |
|
| 3 | fvmptf.3 | |- ( x = A -> B = C ) |
|
| 4 | fvmptf.4 | |- F = ( x e. D |-> B ) |
|
| 5 | 2 | nfel1 | |- F/ x C e. _V |
| 6 | nfmpt1 | |- F/_ x ( x e. D |-> B ) |
|
| 7 | 4 6 | nfcxfr | |- F/_ x F |
| 8 | 7 1 | nffv | |- F/_ x ( F ` A ) |
| 9 | 8 2 | nfeq | |- F/ x ( F ` A ) = C |
| 10 | 5 9 | nfim | |- F/ x ( C e. _V -> ( F ` A ) = C ) |
| 11 | 3 | eleq1d | |- ( x = A -> ( B e. _V <-> C e. _V ) ) |
| 12 | fveq2 | |- ( x = A -> ( F ` x ) = ( F ` A ) ) |
|
| 13 | 12 3 | eqeq12d | |- ( x = A -> ( ( F ` x ) = B <-> ( F ` A ) = C ) ) |
| 14 | 11 13 | imbi12d | |- ( x = A -> ( ( B e. _V -> ( F ` x ) = B ) <-> ( C e. _V -> ( F ` A ) = C ) ) ) |
| 15 | 4 | fvmpt2 | |- ( ( x e. D /\ B e. _V ) -> ( F ` x ) = B ) |
| 16 | 15 | ex | |- ( x e. D -> ( B e. _V -> ( F ` x ) = B ) ) |
| 17 | 1 10 14 16 | vtoclgaf | |- ( A e. D -> ( C e. _V -> ( F ` A ) = C ) ) |
| 18 | elex | |- ( C e. V -> C e. _V ) |
|
| 19 | 17 18 | impel | |- ( ( A e. D /\ C e. V ) -> ( F ` A ) = C ) |