This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The derivative of the complex logarithm function. (Contributed by Mario Carneiro, 25-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | logcn.d | |- D = ( CC \ ( -oo (,] 0 ) ) |
|
| Assertion | dvlog | |- ( CC _D ( log |` D ) ) = ( x e. D |-> ( 1 / x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | logcn.d | |- D = ( CC \ ( -oo (,] 0 ) ) |
|
| 2 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 3 | 2 | cnfldtopon | |- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 4 | 3 | toponrestid | |- ( TopOpen ` CCfld ) = ( ( TopOpen ` CCfld ) |`t CC ) |
| 5 | cnelprrecn | |- CC e. { RR , CC } |
|
| 6 | 5 | a1i | |- ( T. -> CC e. { RR , CC } ) |
| 7 | 1 | logdmopn | |- D e. ( TopOpen ` CCfld ) |
| 8 | 7 | a1i | |- ( T. -> D e. ( TopOpen ` CCfld ) ) |
| 9 | logf1o | |- log : ( CC \ { 0 } ) -1-1-onto-> ran log |
|
| 10 | f1of1 | |- ( log : ( CC \ { 0 } ) -1-1-onto-> ran log -> log : ( CC \ { 0 } ) -1-1-> ran log ) |
|
| 11 | 9 10 | ax-mp | |- log : ( CC \ { 0 } ) -1-1-> ran log |
| 12 | 1 | logdmss | |- D C_ ( CC \ { 0 } ) |
| 13 | f1ores | |- ( ( log : ( CC \ { 0 } ) -1-1-> ran log /\ D C_ ( CC \ { 0 } ) ) -> ( log |` D ) : D -1-1-onto-> ( log " D ) ) |
|
| 14 | 11 12 13 | mp2an | |- ( log |` D ) : D -1-1-onto-> ( log " D ) |
| 15 | f1ocnv | |- ( ( log |` D ) : D -1-1-onto-> ( log " D ) -> `' ( log |` D ) : ( log " D ) -1-1-onto-> D ) |
|
| 16 | 14 15 | ax-mp | |- `' ( log |` D ) : ( log " D ) -1-1-onto-> D |
| 17 | df-log | |- log = `' ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) |
|
| 18 | 17 | reseq1i | |- ( log |` D ) = ( `' ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) |` D ) |
| 19 | 18 | cnveqi | |- `' ( log |` D ) = `' ( `' ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) |` D ) |
| 20 | eff | |- exp : CC --> CC |
|
| 21 | cnvimass | |- ( `' Im " ( -u _pi (,] _pi ) ) C_ dom Im |
|
| 22 | imf | |- Im : CC --> RR |
|
| 23 | 22 | fdmi | |- dom Im = CC |
| 24 | 21 23 | sseqtri | |- ( `' Im " ( -u _pi (,] _pi ) ) C_ CC |
| 25 | fssres | |- ( ( exp : CC --> CC /\ ( `' Im " ( -u _pi (,] _pi ) ) C_ CC ) -> ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) : ( `' Im " ( -u _pi (,] _pi ) ) --> CC ) |
|
| 26 | 20 24 25 | mp2an | |- ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) : ( `' Im " ( -u _pi (,] _pi ) ) --> CC |
| 27 | ffun | |- ( ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) : ( `' Im " ( -u _pi (,] _pi ) ) --> CC -> Fun ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) ) |
|
| 28 | funcnvres2 | |- ( Fun ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) -> `' ( `' ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) |` D ) = ( ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) |` ( `' ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) " D ) ) ) |
|
| 29 | 26 27 28 | mp2b | |- `' ( `' ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) |` D ) = ( ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) |` ( `' ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) " D ) ) |
| 30 | cnvimass | |- ( `' ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) " D ) C_ dom ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) |
|
| 31 | 26 | fdmi | |- dom ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) = ( `' Im " ( -u _pi (,] _pi ) ) |
| 32 | 30 31 | sseqtri | |- ( `' ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) " D ) C_ ( `' Im " ( -u _pi (,] _pi ) ) |
| 33 | resabs1 | |- ( ( `' ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) " D ) C_ ( `' Im " ( -u _pi (,] _pi ) ) -> ( ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) |` ( `' ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) " D ) ) = ( exp |` ( `' ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) " D ) ) ) |
|
| 34 | 32 33 | ax-mp | |- ( ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) |` ( `' ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) " D ) ) = ( exp |` ( `' ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) " D ) ) |
| 35 | 19 29 34 | 3eqtri | |- `' ( log |` D ) = ( exp |` ( `' ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) " D ) ) |
| 36 | 17 | imaeq1i | |- ( log " D ) = ( `' ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) " D ) |
| 37 | 36 | reseq2i | |- ( exp |` ( log " D ) ) = ( exp |` ( `' ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) " D ) ) |
| 38 | 35 37 | eqtr4i | |- `' ( log |` D ) = ( exp |` ( log " D ) ) |
| 39 | f1oeq1 | |- ( `' ( log |` D ) = ( exp |` ( log " D ) ) -> ( `' ( log |` D ) : ( log " D ) -1-1-onto-> D <-> ( exp |` ( log " D ) ) : ( log " D ) -1-1-onto-> D ) ) |
|
| 40 | 38 39 | ax-mp | |- ( `' ( log |` D ) : ( log " D ) -1-1-onto-> D <-> ( exp |` ( log " D ) ) : ( log " D ) -1-1-onto-> D ) |
| 41 | 16 40 | mpbi | |- ( exp |` ( log " D ) ) : ( log " D ) -1-1-onto-> D |
| 42 | 41 | a1i | |- ( T. -> ( exp |` ( log " D ) ) : ( log " D ) -1-1-onto-> D ) |
| 43 | 38 | cnveqi | |- `' `' ( log |` D ) = `' ( exp |` ( log " D ) ) |
| 44 | relres | |- Rel ( log |` D ) |
|
| 45 | dfrel2 | |- ( Rel ( log |` D ) <-> `' `' ( log |` D ) = ( log |` D ) ) |
|
| 46 | 44 45 | mpbi | |- `' `' ( log |` D ) = ( log |` D ) |
| 47 | 43 46 | eqtr3i | |- `' ( exp |` ( log " D ) ) = ( log |` D ) |
| 48 | f1of | |- ( ( log |` D ) : D -1-1-onto-> ( log " D ) -> ( log |` D ) : D --> ( log " D ) ) |
|
| 49 | 14 48 | mp1i | |- ( T. -> ( log |` D ) : D --> ( log " D ) ) |
| 50 | imassrn | |- ( log " D ) C_ ran log |
|
| 51 | logrncn | |- ( x e. ran log -> x e. CC ) |
|
| 52 | 51 | ssriv | |- ran log C_ CC |
| 53 | 50 52 | sstri | |- ( log " D ) C_ CC |
| 54 | 1 | logcn | |- ( log |` D ) e. ( D -cn-> CC ) |
| 55 | cncfcdm | |- ( ( ( log " D ) C_ CC /\ ( log |` D ) e. ( D -cn-> CC ) ) -> ( ( log |` D ) e. ( D -cn-> ( log " D ) ) <-> ( log |` D ) : D --> ( log " D ) ) ) |
|
| 56 | 53 54 55 | mp2an | |- ( ( log |` D ) e. ( D -cn-> ( log " D ) ) <-> ( log |` D ) : D --> ( log " D ) ) |
| 57 | 49 56 | sylibr | |- ( T. -> ( log |` D ) e. ( D -cn-> ( log " D ) ) ) |
| 58 | 47 57 | eqeltrid | |- ( T. -> `' ( exp |` ( log " D ) ) e. ( D -cn-> ( log " D ) ) ) |
| 59 | ssid | |- CC C_ CC |
|
| 60 | 2 4 | dvres | |- ( ( ( CC C_ CC /\ exp : CC --> CC ) /\ ( CC C_ CC /\ ( log " D ) C_ CC ) ) -> ( CC _D ( exp |` ( log " D ) ) ) = ( ( CC _D exp ) |` ( ( int ` ( TopOpen ` CCfld ) ) ` ( log " D ) ) ) ) |
| 61 | 59 20 59 53 60 | mp4an | |- ( CC _D ( exp |` ( log " D ) ) ) = ( ( CC _D exp ) |` ( ( int ` ( TopOpen ` CCfld ) ) ` ( log " D ) ) ) |
| 62 | dvef | |- ( CC _D exp ) = exp |
|
| 63 | 2 | cnfldtop | |- ( TopOpen ` CCfld ) e. Top |
| 64 | 1 | dvloglem | |- ( log " D ) e. ( TopOpen ` CCfld ) |
| 65 | isopn3i | |- ( ( ( TopOpen ` CCfld ) e. Top /\ ( log " D ) e. ( TopOpen ` CCfld ) ) -> ( ( int ` ( TopOpen ` CCfld ) ) ` ( log " D ) ) = ( log " D ) ) |
|
| 66 | 63 64 65 | mp2an | |- ( ( int ` ( TopOpen ` CCfld ) ) ` ( log " D ) ) = ( log " D ) |
| 67 | 62 66 | reseq12i | |- ( ( CC _D exp ) |` ( ( int ` ( TopOpen ` CCfld ) ) ` ( log " D ) ) ) = ( exp |` ( log " D ) ) |
| 68 | 61 67 | eqtri | |- ( CC _D ( exp |` ( log " D ) ) ) = ( exp |` ( log " D ) ) |
| 69 | 68 | dmeqi | |- dom ( CC _D ( exp |` ( log " D ) ) ) = dom ( exp |` ( log " D ) ) |
| 70 | dmres | |- dom ( exp |` ( log " D ) ) = ( ( log " D ) i^i dom exp ) |
|
| 71 | 20 | fdmi | |- dom exp = CC |
| 72 | 53 71 | sseqtrri | |- ( log " D ) C_ dom exp |
| 73 | dfss2 | |- ( ( log " D ) C_ dom exp <-> ( ( log " D ) i^i dom exp ) = ( log " D ) ) |
|
| 74 | 72 73 | mpbi | |- ( ( log " D ) i^i dom exp ) = ( log " D ) |
| 75 | 69 70 74 | 3eqtri | |- dom ( CC _D ( exp |` ( log " D ) ) ) = ( log " D ) |
| 76 | 75 | a1i | |- ( T. -> dom ( CC _D ( exp |` ( log " D ) ) ) = ( log " D ) ) |
| 77 | neirr | |- -. 0 =/= 0 |
|
| 78 | resss | |- ( ( CC _D exp ) |` ( ( int ` ( TopOpen ` CCfld ) ) ` ( log " D ) ) ) C_ ( CC _D exp ) |
|
| 79 | 61 78 | eqsstri | |- ( CC _D ( exp |` ( log " D ) ) ) C_ ( CC _D exp ) |
| 80 | 79 62 | sseqtri | |- ( CC _D ( exp |` ( log " D ) ) ) C_ exp |
| 81 | 80 | rnssi | |- ran ( CC _D ( exp |` ( log " D ) ) ) C_ ran exp |
| 82 | eff2 | |- exp : CC --> ( CC \ { 0 } ) |
|
| 83 | frn | |- ( exp : CC --> ( CC \ { 0 } ) -> ran exp C_ ( CC \ { 0 } ) ) |
|
| 84 | 82 83 | ax-mp | |- ran exp C_ ( CC \ { 0 } ) |
| 85 | 81 84 | sstri | |- ran ( CC _D ( exp |` ( log " D ) ) ) C_ ( CC \ { 0 } ) |
| 86 | 85 | sseli | |- ( 0 e. ran ( CC _D ( exp |` ( log " D ) ) ) -> 0 e. ( CC \ { 0 } ) ) |
| 87 | eldifsn | |- ( 0 e. ( CC \ { 0 } ) <-> ( 0 e. CC /\ 0 =/= 0 ) ) |
|
| 88 | 86 87 | sylib | |- ( 0 e. ran ( CC _D ( exp |` ( log " D ) ) ) -> ( 0 e. CC /\ 0 =/= 0 ) ) |
| 89 | 88 | simprd | |- ( 0 e. ran ( CC _D ( exp |` ( log " D ) ) ) -> 0 =/= 0 ) |
| 90 | 77 89 | mto | |- -. 0 e. ran ( CC _D ( exp |` ( log " D ) ) ) |
| 91 | 90 | a1i | |- ( T. -> -. 0 e. ran ( CC _D ( exp |` ( log " D ) ) ) ) |
| 92 | 2 4 6 8 42 58 76 91 | dvcnv | |- ( T. -> ( CC _D `' ( exp |` ( log " D ) ) ) = ( x e. D |-> ( 1 / ( ( CC _D ( exp |` ( log " D ) ) ) ` ( `' ( exp |` ( log " D ) ) ` x ) ) ) ) ) |
| 93 | 92 | mptru | |- ( CC _D `' ( exp |` ( log " D ) ) ) = ( x e. D |-> ( 1 / ( ( CC _D ( exp |` ( log " D ) ) ) ` ( `' ( exp |` ( log " D ) ) ` x ) ) ) ) |
| 94 | 47 | oveq2i | |- ( CC _D `' ( exp |` ( log " D ) ) ) = ( CC _D ( log |` D ) ) |
| 95 | 68 | fveq1i | |- ( ( CC _D ( exp |` ( log " D ) ) ) ` ( `' ( exp |` ( log " D ) ) ` x ) ) = ( ( exp |` ( log " D ) ) ` ( `' ( exp |` ( log " D ) ) ` x ) ) |
| 96 | f1ocnvfv2 | |- ( ( ( exp |` ( log " D ) ) : ( log " D ) -1-1-onto-> D /\ x e. D ) -> ( ( exp |` ( log " D ) ) ` ( `' ( exp |` ( log " D ) ) ` x ) ) = x ) |
|
| 97 | 41 96 | mpan | |- ( x e. D -> ( ( exp |` ( log " D ) ) ` ( `' ( exp |` ( log " D ) ) ` x ) ) = x ) |
| 98 | 95 97 | eqtrid | |- ( x e. D -> ( ( CC _D ( exp |` ( log " D ) ) ) ` ( `' ( exp |` ( log " D ) ) ` x ) ) = x ) |
| 99 | 98 | oveq2d | |- ( x e. D -> ( 1 / ( ( CC _D ( exp |` ( log " D ) ) ) ` ( `' ( exp |` ( log " D ) ) ` x ) ) ) = ( 1 / x ) ) |
| 100 | 99 | mpteq2ia | |- ( x e. D |-> ( 1 / ( ( CC _D ( exp |` ( log " D ) ) ) ` ( `' ( exp |` ( log " D ) ) ` x ) ) ) ) = ( x e. D |-> ( 1 / x ) ) |
| 101 | 93 94 100 | 3eqtr3i | |- ( CC _D ( log |` D ) ) = ( x e. D |-> ( 1 / x ) ) |