This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the arctangent function. See also remarks for df-asin . Unlike arcsin and arccos , this function is not defined everywhere, because tan ( z ) =/= +-i for all z e. CC . For all other z , there is a formula for arctan ( z ) in terms of log , and we take that as the definition. Branch points are at +- i ; branch cuts are on the pure imaginary axis not between -ui and i , which is to say { z e. CC | ( _i x. z ) e. ( -oo , -u 1 ) u. ( 1 , +oo ) } . (Contributed by Mario Carneiro, 31-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-atan | |- arctan = ( x e. ( CC \ { -u _i , _i } ) |-> ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. x ) ) ) - ( log ` ( 1 + ( _i x. x ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | catan | |- arctan |
|
| 1 | vx | |- x |
|
| 2 | cc | |- CC |
|
| 3 | ci | |- _i |
|
| 4 | 3 | cneg | |- -u _i |
| 5 | 4 3 | cpr | |- { -u _i , _i } |
| 6 | 2 5 | cdif | |- ( CC \ { -u _i , _i } ) |
| 7 | cdiv | |- / |
|
| 8 | c2 | |- 2 |
|
| 9 | 3 8 7 | co | |- ( _i / 2 ) |
| 10 | cmul | |- x. |
|
| 11 | clog | |- log |
|
| 12 | c1 | |- 1 |
|
| 13 | cmin | |- - |
|
| 14 | 1 | cv | |- x |
| 15 | 3 14 10 | co | |- ( _i x. x ) |
| 16 | 12 15 13 | co | |- ( 1 - ( _i x. x ) ) |
| 17 | 16 11 | cfv | |- ( log ` ( 1 - ( _i x. x ) ) ) |
| 18 | caddc | |- + |
|
| 19 | 12 15 18 | co | |- ( 1 + ( _i x. x ) ) |
| 20 | 19 11 | cfv | |- ( log ` ( 1 + ( _i x. x ) ) ) |
| 21 | 17 20 13 | co | |- ( ( log ` ( 1 - ( _i x. x ) ) ) - ( log ` ( 1 + ( _i x. x ) ) ) ) |
| 22 | 9 21 10 | co | |- ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. x ) ) ) - ( log ` ( 1 + ( _i x. x ) ) ) ) ) |
| 23 | 1 6 22 | cmpt | |- ( x e. ( CC \ { -u _i , _i } ) |-> ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. x ) ) ) - ( log ` ( 1 + ( _i x. x ) ) ) ) ) ) |
| 24 | 0 23 | wceq | |- arctan = ( x e. ( CC \ { -u _i , _i } ) |-> ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. x ) ) ) - ( log ` ( 1 + ( _i x. x ) ) ) ) ) ) |