This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Since the property is a little lengthy, we abbreviate A e. CC /\ A =/= -ui /\ A =/= i as A e. dom arctan . This is the necessary precondition for the definition of arctan to make sense. (Contributed by Mario Carneiro, 31-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | atandm | |- ( A e. dom arctan <-> ( A e. CC /\ A =/= -u _i /\ A =/= _i ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif | |- ( A e. ( CC \ { -u _i , _i } ) <-> ( A e. CC /\ -. A e. { -u _i , _i } ) ) |
|
| 2 | elprg | |- ( A e. CC -> ( A e. { -u _i , _i } <-> ( A = -u _i \/ A = _i ) ) ) |
|
| 3 | 2 | notbid | |- ( A e. CC -> ( -. A e. { -u _i , _i } <-> -. ( A = -u _i \/ A = _i ) ) ) |
| 4 | neanior | |- ( ( A =/= -u _i /\ A =/= _i ) <-> -. ( A = -u _i \/ A = _i ) ) |
|
| 5 | 3 4 | bitr4di | |- ( A e. CC -> ( -. A e. { -u _i , _i } <-> ( A =/= -u _i /\ A =/= _i ) ) ) |
| 6 | 5 | pm5.32i | |- ( ( A e. CC /\ -. A e. { -u _i , _i } ) <-> ( A e. CC /\ ( A =/= -u _i /\ A =/= _i ) ) ) |
| 7 | 1 6 | bitri | |- ( A e. ( CC \ { -u _i , _i } ) <-> ( A e. CC /\ ( A =/= -u _i /\ A =/= _i ) ) ) |
| 8 | ovex | |- ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. x ) ) ) - ( log ` ( 1 + ( _i x. x ) ) ) ) ) e. _V |
|
| 9 | df-atan | |- arctan = ( x e. ( CC \ { -u _i , _i } ) |-> ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. x ) ) ) - ( log ` ( 1 + ( _i x. x ) ) ) ) ) ) |
|
| 10 | 8 9 | dmmpti | |- dom arctan = ( CC \ { -u _i , _i } ) |
| 11 | 10 | eleq2i | |- ( A e. dom arctan <-> A e. ( CC \ { -u _i , _i } ) ) |
| 12 | 3anass | |- ( ( A e. CC /\ A =/= -u _i /\ A =/= _i ) <-> ( A e. CC /\ ( A =/= -u _i /\ A =/= _i ) ) ) |
|
| 13 | 7 11 12 | 3bitr4i | |- ( A e. dom arctan <-> ( A e. CC /\ A =/= -u _i /\ A =/= _i ) ) |