This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A compact form of atandm . (Contributed by Mario Carneiro, 3-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | atandm4 | |- ( A e. dom arctan <-> ( A e. CC /\ ( 1 + ( A ^ 2 ) ) =/= 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atandm3 | |- ( A e. dom arctan <-> ( A e. CC /\ ( A ^ 2 ) =/= -u 1 ) ) |
|
| 2 | sqcl | |- ( A e. CC -> ( A ^ 2 ) e. CC ) |
|
| 3 | neg1cn | |- -u 1 e. CC |
|
| 4 | subeq0 | |- ( ( ( A ^ 2 ) e. CC /\ -u 1 e. CC ) -> ( ( ( A ^ 2 ) - -u 1 ) = 0 <-> ( A ^ 2 ) = -u 1 ) ) |
|
| 5 | 2 3 4 | sylancl | |- ( A e. CC -> ( ( ( A ^ 2 ) - -u 1 ) = 0 <-> ( A ^ 2 ) = -u 1 ) ) |
| 6 | ax-1cn | |- 1 e. CC |
|
| 7 | subneg | |- ( ( ( A ^ 2 ) e. CC /\ 1 e. CC ) -> ( ( A ^ 2 ) - -u 1 ) = ( ( A ^ 2 ) + 1 ) ) |
|
| 8 | 2 6 7 | sylancl | |- ( A e. CC -> ( ( A ^ 2 ) - -u 1 ) = ( ( A ^ 2 ) + 1 ) ) |
| 9 | addcom | |- ( ( ( A ^ 2 ) e. CC /\ 1 e. CC ) -> ( ( A ^ 2 ) + 1 ) = ( 1 + ( A ^ 2 ) ) ) |
|
| 10 | 2 6 9 | sylancl | |- ( A e. CC -> ( ( A ^ 2 ) + 1 ) = ( 1 + ( A ^ 2 ) ) ) |
| 11 | 8 10 | eqtrd | |- ( A e. CC -> ( ( A ^ 2 ) - -u 1 ) = ( 1 + ( A ^ 2 ) ) ) |
| 12 | 11 | eqeq1d | |- ( A e. CC -> ( ( ( A ^ 2 ) - -u 1 ) = 0 <-> ( 1 + ( A ^ 2 ) ) = 0 ) ) |
| 13 | 5 12 | bitr3d | |- ( A e. CC -> ( ( A ^ 2 ) = -u 1 <-> ( 1 + ( A ^ 2 ) ) = 0 ) ) |
| 14 | 13 | necon3bid | |- ( A e. CC -> ( ( A ^ 2 ) =/= -u 1 <-> ( 1 + ( A ^ 2 ) ) =/= 0 ) ) |
| 15 | 14 | pm5.32i | |- ( ( A e. CC /\ ( A ^ 2 ) =/= -u 1 ) <-> ( A e. CC /\ ( 1 + ( A ^ 2 ) ) =/= 0 ) ) |
| 16 | 1 15 | bitri | |- ( A e. dom arctan <-> ( A e. CC /\ ( 1 + ( A ^ 2 ) ) =/= 0 ) ) |