This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation of inverted fractions. (Contributed by NM, 28-Dec-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | divcan6 | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( A / B ) x. ( B / A ) ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recdiv | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( 1 / ( A / B ) ) = ( B / A ) ) |
|
| 2 | 1 | oveq2d | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( A / B ) x. ( 1 / ( A / B ) ) ) = ( ( A / B ) x. ( B / A ) ) ) |
| 3 | divcl | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( A / B ) e. CC ) |
|
| 4 | 3 | 3expb | |- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) -> ( A / B ) e. CC ) |
| 5 | 4 | adantlr | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( A / B ) e. CC ) |
| 6 | divne0 | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( A / B ) =/= 0 ) |
|
| 7 | recid | |- ( ( ( A / B ) e. CC /\ ( A / B ) =/= 0 ) -> ( ( A / B ) x. ( 1 / ( A / B ) ) ) = 1 ) |
|
| 8 | 5 6 7 | syl2anc | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( A / B ) x. ( 1 / ( A / B ) ) ) = 1 ) |
| 9 | 2 8 | eqtr3d | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( A / B ) x. ( B / A ) ) = 1 ) |