This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain of continuity of the arctangent is an open set. (Contributed by Mario Carneiro, 7-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | atansopn.d | |- D = ( CC \ ( -oo (,] 0 ) ) |
|
| atansopn.s | |- S = { y e. CC | ( 1 + ( y ^ 2 ) ) e. D } |
||
| Assertion | atansopn | |- S e. ( TopOpen ` CCfld ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atansopn.d | |- D = ( CC \ ( -oo (,] 0 ) ) |
|
| 2 | atansopn.s | |- S = { y e. CC | ( 1 + ( y ^ 2 ) ) e. D } |
|
| 3 | eqid | |- ( y e. CC |-> ( 1 + ( y ^ 2 ) ) ) = ( y e. CC |-> ( 1 + ( y ^ 2 ) ) ) |
|
| 4 | 3 | mptpreima | |- ( `' ( y e. CC |-> ( 1 + ( y ^ 2 ) ) ) " D ) = { y e. CC | ( 1 + ( y ^ 2 ) ) e. D } |
| 5 | 2 4 | eqtr4i | |- S = ( `' ( y e. CC |-> ( 1 + ( y ^ 2 ) ) ) " D ) |
| 6 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 7 | 6 | cnfldtopon | |- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 8 | 7 | a1i | |- ( T. -> ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) |
| 9 | 1cnd | |- ( T. -> 1 e. CC ) |
|
| 10 | 8 8 9 | cnmptc | |- ( T. -> ( y e. CC |-> 1 ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) |
| 11 | 2nn0 | |- 2 e. NN0 |
|
| 12 | 6 | expcn | |- ( 2 e. NN0 -> ( y e. CC |-> ( y ^ 2 ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) |
| 13 | 11 12 | mp1i | |- ( T. -> ( y e. CC |-> ( y ^ 2 ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) |
| 14 | 6 | addcn | |- + e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
| 15 | 14 | a1i | |- ( T. -> + e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 16 | 8 10 13 15 | cnmpt12f | |- ( T. -> ( y e. CC |-> ( 1 + ( y ^ 2 ) ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) |
| 17 | 16 | mptru | |- ( y e. CC |-> ( 1 + ( y ^ 2 ) ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) |
| 18 | 1 | logdmopn | |- D e. ( TopOpen ` CCfld ) |
| 19 | cnima | |- ( ( ( y e. CC |-> ( 1 + ( y ^ 2 ) ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) /\ D e. ( TopOpen ` CCfld ) ) -> ( `' ( y e. CC |-> ( 1 + ( y ^ 2 ) ) ) " D ) e. ( TopOpen ` CCfld ) ) |
|
| 20 | 17 18 19 | mp2an | |- ( `' ( y e. CC |-> ( 1 + ( y ^ 2 ) ) ) " D ) e. ( TopOpen ` CCfld ) |
| 21 | 5 20 | eqeltri | |- S e. ( TopOpen ` CCfld ) |