This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relationship between subtraction and negative. Theorem I.3 of Apostol p. 18. (Contributed by NM, 21-Jan-1997) (Proof shortened by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | negsub | |- ( ( A e. CC /\ B e. CC ) -> ( A + -u B ) = ( A - B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-neg | |- -u B = ( 0 - B ) |
|
| 2 | 1 | oveq2i | |- ( A + -u B ) = ( A + ( 0 - B ) ) |
| 3 | 2 | a1i | |- ( ( A e. CC /\ B e. CC ) -> ( A + -u B ) = ( A + ( 0 - B ) ) ) |
| 4 | 0cn | |- 0 e. CC |
|
| 5 | addsubass | |- ( ( A e. CC /\ 0 e. CC /\ B e. CC ) -> ( ( A + 0 ) - B ) = ( A + ( 0 - B ) ) ) |
|
| 6 | 4 5 | mp3an2 | |- ( ( A e. CC /\ B e. CC ) -> ( ( A + 0 ) - B ) = ( A + ( 0 - B ) ) ) |
| 7 | simpl | |- ( ( A e. CC /\ B e. CC ) -> A e. CC ) |
|
| 8 | 7 | addridd | |- ( ( A e. CC /\ B e. CC ) -> ( A + 0 ) = A ) |
| 9 | 8 | oveq1d | |- ( ( A e. CC /\ B e. CC ) -> ( ( A + 0 ) - B ) = ( A - B ) ) |
| 10 | 3 6 9 | 3eqtr2d | |- ( ( A e. CC /\ B e. CC ) -> ( A + -u B ) = ( A - B ) ) |