This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: This form of atandm is a bit more useful for showing that the logarithms in df-atan are well-defined. (Contributed by Mario Carneiro, 31-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | atandm2 | |- ( A e. dom arctan <-> ( A e. CC /\ ( 1 - ( _i x. A ) ) =/= 0 /\ ( 1 + ( _i x. A ) ) =/= 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atandm | |- ( A e. dom arctan <-> ( A e. CC /\ A =/= -u _i /\ A =/= _i ) ) |
|
| 2 | 3anass | |- ( ( A e. CC /\ ( 1 - ( _i x. A ) ) =/= 0 /\ ( 1 + ( _i x. A ) ) =/= 0 ) <-> ( A e. CC /\ ( ( 1 - ( _i x. A ) ) =/= 0 /\ ( 1 + ( _i x. A ) ) =/= 0 ) ) ) |
|
| 3 | ax-1cn | |- 1 e. CC |
|
| 4 | ax-icn | |- _i e. CC |
|
| 5 | mulcl | |- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
|
| 6 | 4 5 | mpan | |- ( A e. CC -> ( _i x. A ) e. CC ) |
| 7 | subeq0 | |- ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( ( 1 - ( _i x. A ) ) = 0 <-> 1 = ( _i x. A ) ) ) |
|
| 8 | 3 6 7 | sylancr | |- ( A e. CC -> ( ( 1 - ( _i x. A ) ) = 0 <-> 1 = ( _i x. A ) ) ) |
| 9 | 4 4 | mulneg2i | |- ( _i x. -u _i ) = -u ( _i x. _i ) |
| 10 | ixi | |- ( _i x. _i ) = -u 1 |
|
| 11 | 10 | negeqi | |- -u ( _i x. _i ) = -u -u 1 |
| 12 | negneg1e1 | |- -u -u 1 = 1 |
|
| 13 | 9 11 12 | 3eqtri | |- ( _i x. -u _i ) = 1 |
| 14 | 13 | eqeq2i | |- ( ( _i x. A ) = ( _i x. -u _i ) <-> ( _i x. A ) = 1 ) |
| 15 | eqcom | |- ( ( _i x. A ) = 1 <-> 1 = ( _i x. A ) ) |
|
| 16 | 14 15 | bitri | |- ( ( _i x. A ) = ( _i x. -u _i ) <-> 1 = ( _i x. A ) ) |
| 17 | 8 16 | bitr4di | |- ( A e. CC -> ( ( 1 - ( _i x. A ) ) = 0 <-> ( _i x. A ) = ( _i x. -u _i ) ) ) |
| 18 | id | |- ( A e. CC -> A e. CC ) |
|
| 19 | 4 | negcli | |- -u _i e. CC |
| 20 | 19 | a1i | |- ( A e. CC -> -u _i e. CC ) |
| 21 | 4 | a1i | |- ( A e. CC -> _i e. CC ) |
| 22 | ine0 | |- _i =/= 0 |
|
| 23 | 22 | a1i | |- ( A e. CC -> _i =/= 0 ) |
| 24 | 18 20 21 23 | mulcand | |- ( A e. CC -> ( ( _i x. A ) = ( _i x. -u _i ) <-> A = -u _i ) ) |
| 25 | 17 24 | bitrd | |- ( A e. CC -> ( ( 1 - ( _i x. A ) ) = 0 <-> A = -u _i ) ) |
| 26 | 25 | necon3bid | |- ( A e. CC -> ( ( 1 - ( _i x. A ) ) =/= 0 <-> A =/= -u _i ) ) |
| 27 | addcom | |- ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 + ( _i x. A ) ) = ( ( _i x. A ) + 1 ) ) |
|
| 28 | 3 6 27 | sylancr | |- ( A e. CC -> ( 1 + ( _i x. A ) ) = ( ( _i x. A ) + 1 ) ) |
| 29 | subneg | |- ( ( ( _i x. A ) e. CC /\ 1 e. CC ) -> ( ( _i x. A ) - -u 1 ) = ( ( _i x. A ) + 1 ) ) |
|
| 30 | 6 3 29 | sylancl | |- ( A e. CC -> ( ( _i x. A ) - -u 1 ) = ( ( _i x. A ) + 1 ) ) |
| 31 | 28 30 | eqtr4d | |- ( A e. CC -> ( 1 + ( _i x. A ) ) = ( ( _i x. A ) - -u 1 ) ) |
| 32 | 31 | eqeq1d | |- ( A e. CC -> ( ( 1 + ( _i x. A ) ) = 0 <-> ( ( _i x. A ) - -u 1 ) = 0 ) ) |
| 33 | 3 | negcli | |- -u 1 e. CC |
| 34 | subeq0 | |- ( ( ( _i x. A ) e. CC /\ -u 1 e. CC ) -> ( ( ( _i x. A ) - -u 1 ) = 0 <-> ( _i x. A ) = -u 1 ) ) |
|
| 35 | 6 33 34 | sylancl | |- ( A e. CC -> ( ( ( _i x. A ) - -u 1 ) = 0 <-> ( _i x. A ) = -u 1 ) ) |
| 36 | 32 35 | bitrd | |- ( A e. CC -> ( ( 1 + ( _i x. A ) ) = 0 <-> ( _i x. A ) = -u 1 ) ) |
| 37 | 10 | eqeq2i | |- ( ( _i x. A ) = ( _i x. _i ) <-> ( _i x. A ) = -u 1 ) |
| 38 | 36 37 | bitr4di | |- ( A e. CC -> ( ( 1 + ( _i x. A ) ) = 0 <-> ( _i x. A ) = ( _i x. _i ) ) ) |
| 39 | 18 21 21 23 | mulcand | |- ( A e. CC -> ( ( _i x. A ) = ( _i x. _i ) <-> A = _i ) ) |
| 40 | 38 39 | bitrd | |- ( A e. CC -> ( ( 1 + ( _i x. A ) ) = 0 <-> A = _i ) ) |
| 41 | 40 | necon3bid | |- ( A e. CC -> ( ( 1 + ( _i x. A ) ) =/= 0 <-> A =/= _i ) ) |
| 42 | 26 41 | anbi12d | |- ( A e. CC -> ( ( ( 1 - ( _i x. A ) ) =/= 0 /\ ( 1 + ( _i x. A ) ) =/= 0 ) <-> ( A =/= -u _i /\ A =/= _i ) ) ) |
| 43 | 42 | pm5.32i | |- ( ( A e. CC /\ ( ( 1 - ( _i x. A ) ) =/= 0 /\ ( 1 + ( _i x. A ) ) =/= 0 ) ) <-> ( A e. CC /\ ( A =/= -u _i /\ A =/= _i ) ) ) |
| 44 | 3anass | |- ( ( A e. CC /\ A =/= -u _i /\ A =/= _i ) <-> ( A e. CC /\ ( A =/= -u _i /\ A =/= _i ) ) ) |
|
| 45 | 43 44 | bitr4i | |- ( ( A e. CC /\ ( ( 1 - ( _i x. A ) ) =/= 0 /\ ( 1 + ( _i x. A ) ) =/= 0 ) ) <-> ( A e. CC /\ A =/= -u _i /\ A =/= _i ) ) |
| 46 | 2 45 | bitri | |- ( ( A e. CC /\ ( 1 - ( _i x. A ) ) =/= 0 /\ ( 1 + ( _i x. A ) ) =/= 0 ) <-> ( A e. CC /\ A =/= -u _i /\ A =/= _i ) ) |
| 47 | 1 46 | bitr4i | |- ( A e. dom arctan <-> ( A e. CC /\ ( 1 - ( _i x. A ) ) =/= 0 /\ ( 1 + ( _i x. A ) ) =/= 0 ) ) |