This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain of continuity of the arctangent is a subset of the actual domain of the arctangent. (Contributed by Mario Carneiro, 7-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | atansopn.d | |- D = ( CC \ ( -oo (,] 0 ) ) |
|
| atansopn.s | |- S = { y e. CC | ( 1 + ( y ^ 2 ) ) e. D } |
||
| Assertion | atansssdm | |- S C_ dom arctan |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atansopn.d | |- D = ( CC \ ( -oo (,] 0 ) ) |
|
| 2 | atansopn.s | |- S = { y e. CC | ( 1 + ( y ^ 2 ) ) e. D } |
|
| 3 | rabss | |- ( { y e. CC | ( 1 + ( y ^ 2 ) ) e. D } C_ dom arctan <-> A. y e. CC ( ( 1 + ( y ^ 2 ) ) e. D -> y e. dom arctan ) ) |
|
| 4 | simpl | |- ( ( y e. CC /\ ( 1 + ( y ^ 2 ) ) e. D ) -> y e. CC ) |
|
| 5 | 1 | logdmn0 | |- ( ( 1 + ( y ^ 2 ) ) e. D -> ( 1 + ( y ^ 2 ) ) =/= 0 ) |
| 6 | 5 | adantl | |- ( ( y e. CC /\ ( 1 + ( y ^ 2 ) ) e. D ) -> ( 1 + ( y ^ 2 ) ) =/= 0 ) |
| 7 | atandm4 | |- ( y e. dom arctan <-> ( y e. CC /\ ( 1 + ( y ^ 2 ) ) =/= 0 ) ) |
|
| 8 | 4 6 7 | sylanbrc | |- ( ( y e. CC /\ ( 1 + ( y ^ 2 ) ) e. D ) -> y e. dom arctan ) |
| 9 | 8 | ex | |- ( y e. CC -> ( ( 1 + ( y ^ 2 ) ) e. D -> y e. dom arctan ) ) |
| 10 | 3 9 | mprgbir | |- { y e. CC | ( 1 + ( y ^ 2 ) ) e. D } C_ dom arctan |
| 11 | 2 10 | eqsstri | |- S C_ dom arctan |