This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Factor the difference of two squares. (Contributed by NM, 21-Feb-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | subsq | |- ( ( A e. CC /\ B e. CC ) -> ( ( A ^ 2 ) - ( B ^ 2 ) ) = ( ( A + B ) x. ( A - B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( A e. CC /\ B e. CC ) -> A e. CC ) |
|
| 2 | simpr | |- ( ( A e. CC /\ B e. CC ) -> B e. CC ) |
|
| 3 | subcl | |- ( ( A e. CC /\ B e. CC ) -> ( A - B ) e. CC ) |
|
| 4 | 1 2 3 | adddird | |- ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) x. ( A - B ) ) = ( ( A x. ( A - B ) ) + ( B x. ( A - B ) ) ) ) |
| 5 | subdi | |- ( ( A e. CC /\ A e. CC /\ B e. CC ) -> ( A x. ( A - B ) ) = ( ( A x. A ) - ( A x. B ) ) ) |
|
| 6 | 5 | 3anidm12 | |- ( ( A e. CC /\ B e. CC ) -> ( A x. ( A - B ) ) = ( ( A x. A ) - ( A x. B ) ) ) |
| 7 | sqval | |- ( A e. CC -> ( A ^ 2 ) = ( A x. A ) ) |
|
| 8 | 7 | adantr | |- ( ( A e. CC /\ B e. CC ) -> ( A ^ 2 ) = ( A x. A ) ) |
| 9 | 8 | oveq1d | |- ( ( A e. CC /\ B e. CC ) -> ( ( A ^ 2 ) - ( A x. B ) ) = ( ( A x. A ) - ( A x. B ) ) ) |
| 10 | 6 9 | eqtr4d | |- ( ( A e. CC /\ B e. CC ) -> ( A x. ( A - B ) ) = ( ( A ^ 2 ) - ( A x. B ) ) ) |
| 11 | 2 1 2 | subdid | |- ( ( A e. CC /\ B e. CC ) -> ( B x. ( A - B ) ) = ( ( B x. A ) - ( B x. B ) ) ) |
| 12 | mulcom | |- ( ( A e. CC /\ B e. CC ) -> ( A x. B ) = ( B x. A ) ) |
|
| 13 | sqval | |- ( B e. CC -> ( B ^ 2 ) = ( B x. B ) ) |
|
| 14 | 13 | adantl | |- ( ( A e. CC /\ B e. CC ) -> ( B ^ 2 ) = ( B x. B ) ) |
| 15 | 12 14 | oveq12d | |- ( ( A e. CC /\ B e. CC ) -> ( ( A x. B ) - ( B ^ 2 ) ) = ( ( B x. A ) - ( B x. B ) ) ) |
| 16 | 11 15 | eqtr4d | |- ( ( A e. CC /\ B e. CC ) -> ( B x. ( A - B ) ) = ( ( A x. B ) - ( B ^ 2 ) ) ) |
| 17 | 10 16 | oveq12d | |- ( ( A e. CC /\ B e. CC ) -> ( ( A x. ( A - B ) ) + ( B x. ( A - B ) ) ) = ( ( ( A ^ 2 ) - ( A x. B ) ) + ( ( A x. B ) - ( B ^ 2 ) ) ) ) |
| 18 | sqcl | |- ( A e. CC -> ( A ^ 2 ) e. CC ) |
|
| 19 | 18 | adantr | |- ( ( A e. CC /\ B e. CC ) -> ( A ^ 2 ) e. CC ) |
| 20 | mulcl | |- ( ( A e. CC /\ B e. CC ) -> ( A x. B ) e. CC ) |
|
| 21 | sqcl | |- ( B e. CC -> ( B ^ 2 ) e. CC ) |
|
| 22 | 21 | adantl | |- ( ( A e. CC /\ B e. CC ) -> ( B ^ 2 ) e. CC ) |
| 23 | 19 20 22 | npncand | |- ( ( A e. CC /\ B e. CC ) -> ( ( ( A ^ 2 ) - ( A x. B ) ) + ( ( A x. B ) - ( B ^ 2 ) ) ) = ( ( A ^ 2 ) - ( B ^ 2 ) ) ) |
| 24 | 4 17 23 | 3eqtrrd | |- ( ( A e. CC /\ B e. CC ) -> ( ( A ^ 2 ) - ( B ^ 2 ) ) = ( ( A + B ) x. ( A - B ) ) ) |