This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Domain and codoamin of the arctan function. (Contributed by Mario Carneiro, 31-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | atanf | |- arctan : ( CC \ { -u _i , _i } ) --> CC |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-atan | |- arctan = ( x e. ( CC \ { -u _i , _i } ) |-> ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. x ) ) ) - ( log ` ( 1 + ( _i x. x ) ) ) ) ) ) |
|
| 2 | ovex | |- ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. x ) ) ) - ( log ` ( 1 + ( _i x. x ) ) ) ) ) e. _V |
|
| 3 | 2 1 | dmmpti | |- dom arctan = ( CC \ { -u _i , _i } ) |
| 4 | 3 | eleq2i | |- ( x e. dom arctan <-> x e. ( CC \ { -u _i , _i } ) ) |
| 5 | ax-icn | |- _i e. CC |
|
| 6 | halfcl | |- ( _i e. CC -> ( _i / 2 ) e. CC ) |
|
| 7 | 5 6 | ax-mp | |- ( _i / 2 ) e. CC |
| 8 | ax-1cn | |- 1 e. CC |
|
| 9 | atandm2 | |- ( x e. dom arctan <-> ( x e. CC /\ ( 1 - ( _i x. x ) ) =/= 0 /\ ( 1 + ( _i x. x ) ) =/= 0 ) ) |
|
| 10 | 9 | simp1bi | |- ( x e. dom arctan -> x e. CC ) |
| 11 | mulcl | |- ( ( _i e. CC /\ x e. CC ) -> ( _i x. x ) e. CC ) |
|
| 12 | 5 10 11 | sylancr | |- ( x e. dom arctan -> ( _i x. x ) e. CC ) |
| 13 | subcl | |- ( ( 1 e. CC /\ ( _i x. x ) e. CC ) -> ( 1 - ( _i x. x ) ) e. CC ) |
|
| 14 | 8 12 13 | sylancr | |- ( x e. dom arctan -> ( 1 - ( _i x. x ) ) e. CC ) |
| 15 | 9 | simp2bi | |- ( x e. dom arctan -> ( 1 - ( _i x. x ) ) =/= 0 ) |
| 16 | 14 15 | logcld | |- ( x e. dom arctan -> ( log ` ( 1 - ( _i x. x ) ) ) e. CC ) |
| 17 | addcl | |- ( ( 1 e. CC /\ ( _i x. x ) e. CC ) -> ( 1 + ( _i x. x ) ) e. CC ) |
|
| 18 | 8 12 17 | sylancr | |- ( x e. dom arctan -> ( 1 + ( _i x. x ) ) e. CC ) |
| 19 | 9 | simp3bi | |- ( x e. dom arctan -> ( 1 + ( _i x. x ) ) =/= 0 ) |
| 20 | 18 19 | logcld | |- ( x e. dom arctan -> ( log ` ( 1 + ( _i x. x ) ) ) e. CC ) |
| 21 | 16 20 | subcld | |- ( x e. dom arctan -> ( ( log ` ( 1 - ( _i x. x ) ) ) - ( log ` ( 1 + ( _i x. x ) ) ) ) e. CC ) |
| 22 | mulcl | |- ( ( ( _i / 2 ) e. CC /\ ( ( log ` ( 1 - ( _i x. x ) ) ) - ( log ` ( 1 + ( _i x. x ) ) ) ) e. CC ) -> ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. x ) ) ) - ( log ` ( 1 + ( _i x. x ) ) ) ) ) e. CC ) |
|
| 23 | 7 21 22 | sylancr | |- ( x e. dom arctan -> ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. x ) ) ) - ( log ` ( 1 + ( _i x. x ) ) ) ) ) e. CC ) |
| 24 | 4 23 | sylbir | |- ( x e. ( CC \ { -u _i , _i } ) -> ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. x ) ) ) - ( log ` ( 1 + ( _i x. x ) ) ) ) ) e. CC ) |
| 25 | 1 24 | fmpti | |- arctan : ( CC \ { -u _i , _i } ) --> CC |