This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Centralizers in a group are subgroups. (Contributed by Stefan O'Rear, 6-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cntzrec.b | |- B = ( Base ` M ) |
|
| cntzrec.z | |- Z = ( Cntz ` M ) |
||
| Assertion | cntzsubg | |- ( ( M e. Grp /\ S C_ B ) -> ( Z ` S ) e. ( SubGrp ` M ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntzrec.b | |- B = ( Base ` M ) |
|
| 2 | cntzrec.z | |- Z = ( Cntz ` M ) |
|
| 3 | grpmnd | |- ( M e. Grp -> M e. Mnd ) |
|
| 4 | 1 2 | cntzsubm | |- ( ( M e. Mnd /\ S C_ B ) -> ( Z ` S ) e. ( SubMnd ` M ) ) |
| 5 | 3 4 | sylan | |- ( ( M e. Grp /\ S C_ B ) -> ( Z ` S ) e. ( SubMnd ` M ) ) |
| 6 | simpll | |- ( ( ( M e. Grp /\ S C_ B ) /\ ( x e. ( Z ` S ) /\ y e. S ) ) -> M e. Grp ) |
|
| 7 | 1 2 | cntzssv | |- ( Z ` S ) C_ B |
| 8 | simprl | |- ( ( ( M e. Grp /\ S C_ B ) /\ ( x e. ( Z ` S ) /\ y e. S ) ) -> x e. ( Z ` S ) ) |
|
| 9 | 7 8 | sselid | |- ( ( ( M e. Grp /\ S C_ B ) /\ ( x e. ( Z ` S ) /\ y e. S ) ) -> x e. B ) |
| 10 | eqid | |- ( invg ` M ) = ( invg ` M ) |
|
| 11 | 1 10 | grpinvcl | |- ( ( M e. Grp /\ x e. B ) -> ( ( invg ` M ) ` x ) e. B ) |
| 12 | 6 9 11 | syl2anc | |- ( ( ( M e. Grp /\ S C_ B ) /\ ( x e. ( Z ` S ) /\ y e. S ) ) -> ( ( invg ` M ) ` x ) e. B ) |
| 13 | ssel2 | |- ( ( S C_ B /\ y e. S ) -> y e. B ) |
|
| 14 | 13 | ad2ant2l | |- ( ( ( M e. Grp /\ S C_ B ) /\ ( x e. ( Z ` S ) /\ y e. S ) ) -> y e. B ) |
| 15 | eqid | |- ( +g ` M ) = ( +g ` M ) |
|
| 16 | 1 15 | grpcl | |- ( ( M e. Grp /\ x e. B /\ ( ( invg ` M ) ` x ) e. B ) -> ( x ( +g ` M ) ( ( invg ` M ) ` x ) ) e. B ) |
| 17 | 6 9 12 16 | syl3anc | |- ( ( ( M e. Grp /\ S C_ B ) /\ ( x e. ( Z ` S ) /\ y e. S ) ) -> ( x ( +g ` M ) ( ( invg ` M ) ` x ) ) e. B ) |
| 18 | 1 15 | grpass | |- ( ( M e. Grp /\ ( ( ( invg ` M ) ` x ) e. B /\ y e. B /\ ( x ( +g ` M ) ( ( invg ` M ) ` x ) ) e. B ) ) -> ( ( ( ( invg ` M ) ` x ) ( +g ` M ) y ) ( +g ` M ) ( x ( +g ` M ) ( ( invg ` M ) ` x ) ) ) = ( ( ( invg ` M ) ` x ) ( +g ` M ) ( y ( +g ` M ) ( x ( +g ` M ) ( ( invg ` M ) ` x ) ) ) ) ) |
| 19 | 6 12 14 17 18 | syl13anc | |- ( ( ( M e. Grp /\ S C_ B ) /\ ( x e. ( Z ` S ) /\ y e. S ) ) -> ( ( ( ( invg ` M ) ` x ) ( +g ` M ) y ) ( +g ` M ) ( x ( +g ` M ) ( ( invg ` M ) ` x ) ) ) = ( ( ( invg ` M ) ` x ) ( +g ` M ) ( y ( +g ` M ) ( x ( +g ` M ) ( ( invg ` M ) ` x ) ) ) ) ) |
| 20 | 1 15 | grpass | |- ( ( M e. Grp /\ ( y e. B /\ x e. B /\ ( ( invg ` M ) ` x ) e. B ) ) -> ( ( y ( +g ` M ) x ) ( +g ` M ) ( ( invg ` M ) ` x ) ) = ( y ( +g ` M ) ( x ( +g ` M ) ( ( invg ` M ) ` x ) ) ) ) |
| 21 | 6 14 9 12 20 | syl13anc | |- ( ( ( M e. Grp /\ S C_ B ) /\ ( x e. ( Z ` S ) /\ y e. S ) ) -> ( ( y ( +g ` M ) x ) ( +g ` M ) ( ( invg ` M ) ` x ) ) = ( y ( +g ` M ) ( x ( +g ` M ) ( ( invg ` M ) ` x ) ) ) ) |
| 22 | 21 | oveq2d | |- ( ( ( M e. Grp /\ S C_ B ) /\ ( x e. ( Z ` S ) /\ y e. S ) ) -> ( ( ( invg ` M ) ` x ) ( +g ` M ) ( ( y ( +g ` M ) x ) ( +g ` M ) ( ( invg ` M ) ` x ) ) ) = ( ( ( invg ` M ) ` x ) ( +g ` M ) ( y ( +g ` M ) ( x ( +g ` M ) ( ( invg ` M ) ` x ) ) ) ) ) |
| 23 | 19 22 | eqtr4d | |- ( ( ( M e. Grp /\ S C_ B ) /\ ( x e. ( Z ` S ) /\ y e. S ) ) -> ( ( ( ( invg ` M ) ` x ) ( +g ` M ) y ) ( +g ` M ) ( x ( +g ` M ) ( ( invg ` M ) ` x ) ) ) = ( ( ( invg ` M ) ` x ) ( +g ` M ) ( ( y ( +g ` M ) x ) ( +g ` M ) ( ( invg ` M ) ` x ) ) ) ) |
| 24 | 15 2 | cntzi | |- ( ( x e. ( Z ` S ) /\ y e. S ) -> ( x ( +g ` M ) y ) = ( y ( +g ` M ) x ) ) |
| 25 | 24 | adantl | |- ( ( ( M e. Grp /\ S C_ B ) /\ ( x e. ( Z ` S ) /\ y e. S ) ) -> ( x ( +g ` M ) y ) = ( y ( +g ` M ) x ) ) |
| 26 | 25 | oveq1d | |- ( ( ( M e. Grp /\ S C_ B ) /\ ( x e. ( Z ` S ) /\ y e. S ) ) -> ( ( x ( +g ` M ) y ) ( +g ` M ) ( ( invg ` M ) ` x ) ) = ( ( y ( +g ` M ) x ) ( +g ` M ) ( ( invg ` M ) ` x ) ) ) |
| 27 | 26 | oveq2d | |- ( ( ( M e. Grp /\ S C_ B ) /\ ( x e. ( Z ` S ) /\ y e. S ) ) -> ( ( ( invg ` M ) ` x ) ( +g ` M ) ( ( x ( +g ` M ) y ) ( +g ` M ) ( ( invg ` M ) ` x ) ) ) = ( ( ( invg ` M ) ` x ) ( +g ` M ) ( ( y ( +g ` M ) x ) ( +g ` M ) ( ( invg ` M ) ` x ) ) ) ) |
| 28 | 23 27 | eqtr4d | |- ( ( ( M e. Grp /\ S C_ B ) /\ ( x e. ( Z ` S ) /\ y e. S ) ) -> ( ( ( ( invg ` M ) ` x ) ( +g ` M ) y ) ( +g ` M ) ( x ( +g ` M ) ( ( invg ` M ) ` x ) ) ) = ( ( ( invg ` M ) ` x ) ( +g ` M ) ( ( x ( +g ` M ) y ) ( +g ` M ) ( ( invg ` M ) ` x ) ) ) ) |
| 29 | 1 15 | grpcl | |- ( ( M e. Grp /\ y e. B /\ ( ( invg ` M ) ` x ) e. B ) -> ( y ( +g ` M ) ( ( invg ` M ) ` x ) ) e. B ) |
| 30 | 6 14 12 29 | syl3anc | |- ( ( ( M e. Grp /\ S C_ B ) /\ ( x e. ( Z ` S ) /\ y e. S ) ) -> ( y ( +g ` M ) ( ( invg ` M ) ` x ) ) e. B ) |
| 31 | 1 15 | grpass | |- ( ( M e. Grp /\ ( ( ( invg ` M ) ` x ) e. B /\ x e. B /\ ( y ( +g ` M ) ( ( invg ` M ) ` x ) ) e. B ) ) -> ( ( ( ( invg ` M ) ` x ) ( +g ` M ) x ) ( +g ` M ) ( y ( +g ` M ) ( ( invg ` M ) ` x ) ) ) = ( ( ( invg ` M ) ` x ) ( +g ` M ) ( x ( +g ` M ) ( y ( +g ` M ) ( ( invg ` M ) ` x ) ) ) ) ) |
| 32 | 6 12 9 30 31 | syl13anc | |- ( ( ( M e. Grp /\ S C_ B ) /\ ( x e. ( Z ` S ) /\ y e. S ) ) -> ( ( ( ( invg ` M ) ` x ) ( +g ` M ) x ) ( +g ` M ) ( y ( +g ` M ) ( ( invg ` M ) ` x ) ) ) = ( ( ( invg ` M ) ` x ) ( +g ` M ) ( x ( +g ` M ) ( y ( +g ` M ) ( ( invg ` M ) ` x ) ) ) ) ) |
| 33 | 1 15 | grpass | |- ( ( M e. Grp /\ ( x e. B /\ y e. B /\ ( ( invg ` M ) ` x ) e. B ) ) -> ( ( x ( +g ` M ) y ) ( +g ` M ) ( ( invg ` M ) ` x ) ) = ( x ( +g ` M ) ( y ( +g ` M ) ( ( invg ` M ) ` x ) ) ) ) |
| 34 | 6 9 14 12 33 | syl13anc | |- ( ( ( M e. Grp /\ S C_ B ) /\ ( x e. ( Z ` S ) /\ y e. S ) ) -> ( ( x ( +g ` M ) y ) ( +g ` M ) ( ( invg ` M ) ` x ) ) = ( x ( +g ` M ) ( y ( +g ` M ) ( ( invg ` M ) ` x ) ) ) ) |
| 35 | 34 | oveq2d | |- ( ( ( M e. Grp /\ S C_ B ) /\ ( x e. ( Z ` S ) /\ y e. S ) ) -> ( ( ( invg ` M ) ` x ) ( +g ` M ) ( ( x ( +g ` M ) y ) ( +g ` M ) ( ( invg ` M ) ` x ) ) ) = ( ( ( invg ` M ) ` x ) ( +g ` M ) ( x ( +g ` M ) ( y ( +g ` M ) ( ( invg ` M ) ` x ) ) ) ) ) |
| 36 | 32 35 | eqtr4d | |- ( ( ( M e. Grp /\ S C_ B ) /\ ( x e. ( Z ` S ) /\ y e. S ) ) -> ( ( ( ( invg ` M ) ` x ) ( +g ` M ) x ) ( +g ` M ) ( y ( +g ` M ) ( ( invg ` M ) ` x ) ) ) = ( ( ( invg ` M ) ` x ) ( +g ` M ) ( ( x ( +g ` M ) y ) ( +g ` M ) ( ( invg ` M ) ` x ) ) ) ) |
| 37 | 28 36 | eqtr4d | |- ( ( ( M e. Grp /\ S C_ B ) /\ ( x e. ( Z ` S ) /\ y e. S ) ) -> ( ( ( ( invg ` M ) ` x ) ( +g ` M ) y ) ( +g ` M ) ( x ( +g ` M ) ( ( invg ` M ) ` x ) ) ) = ( ( ( ( invg ` M ) ` x ) ( +g ` M ) x ) ( +g ` M ) ( y ( +g ` M ) ( ( invg ` M ) ` x ) ) ) ) |
| 38 | eqid | |- ( 0g ` M ) = ( 0g ` M ) |
|
| 39 | 1 15 38 10 | grprinv | |- ( ( M e. Grp /\ x e. B ) -> ( x ( +g ` M ) ( ( invg ` M ) ` x ) ) = ( 0g ` M ) ) |
| 40 | 6 9 39 | syl2anc | |- ( ( ( M e. Grp /\ S C_ B ) /\ ( x e. ( Z ` S ) /\ y e. S ) ) -> ( x ( +g ` M ) ( ( invg ` M ) ` x ) ) = ( 0g ` M ) ) |
| 41 | 40 | oveq2d | |- ( ( ( M e. Grp /\ S C_ B ) /\ ( x e. ( Z ` S ) /\ y e. S ) ) -> ( ( ( ( invg ` M ) ` x ) ( +g ` M ) y ) ( +g ` M ) ( x ( +g ` M ) ( ( invg ` M ) ` x ) ) ) = ( ( ( ( invg ` M ) ` x ) ( +g ` M ) y ) ( +g ` M ) ( 0g ` M ) ) ) |
| 42 | 1 15 | grpcl | |- ( ( M e. Grp /\ ( ( invg ` M ) ` x ) e. B /\ y e. B ) -> ( ( ( invg ` M ) ` x ) ( +g ` M ) y ) e. B ) |
| 43 | 6 12 14 42 | syl3anc | |- ( ( ( M e. Grp /\ S C_ B ) /\ ( x e. ( Z ` S ) /\ y e. S ) ) -> ( ( ( invg ` M ) ` x ) ( +g ` M ) y ) e. B ) |
| 44 | 1 15 38 | grprid | |- ( ( M e. Grp /\ ( ( ( invg ` M ) ` x ) ( +g ` M ) y ) e. B ) -> ( ( ( ( invg ` M ) ` x ) ( +g ` M ) y ) ( +g ` M ) ( 0g ` M ) ) = ( ( ( invg ` M ) ` x ) ( +g ` M ) y ) ) |
| 45 | 6 43 44 | syl2anc | |- ( ( ( M e. Grp /\ S C_ B ) /\ ( x e. ( Z ` S ) /\ y e. S ) ) -> ( ( ( ( invg ` M ) ` x ) ( +g ` M ) y ) ( +g ` M ) ( 0g ` M ) ) = ( ( ( invg ` M ) ` x ) ( +g ` M ) y ) ) |
| 46 | 41 45 | eqtrd | |- ( ( ( M e. Grp /\ S C_ B ) /\ ( x e. ( Z ` S ) /\ y e. S ) ) -> ( ( ( ( invg ` M ) ` x ) ( +g ` M ) y ) ( +g ` M ) ( x ( +g ` M ) ( ( invg ` M ) ` x ) ) ) = ( ( ( invg ` M ) ` x ) ( +g ` M ) y ) ) |
| 47 | 1 15 38 10 | grplinv | |- ( ( M e. Grp /\ x e. B ) -> ( ( ( invg ` M ) ` x ) ( +g ` M ) x ) = ( 0g ` M ) ) |
| 48 | 6 9 47 | syl2anc | |- ( ( ( M e. Grp /\ S C_ B ) /\ ( x e. ( Z ` S ) /\ y e. S ) ) -> ( ( ( invg ` M ) ` x ) ( +g ` M ) x ) = ( 0g ` M ) ) |
| 49 | 48 | oveq1d | |- ( ( ( M e. Grp /\ S C_ B ) /\ ( x e. ( Z ` S ) /\ y e. S ) ) -> ( ( ( ( invg ` M ) ` x ) ( +g ` M ) x ) ( +g ` M ) ( y ( +g ` M ) ( ( invg ` M ) ` x ) ) ) = ( ( 0g ` M ) ( +g ` M ) ( y ( +g ` M ) ( ( invg ` M ) ` x ) ) ) ) |
| 50 | 1 15 38 | grplid | |- ( ( M e. Grp /\ ( y ( +g ` M ) ( ( invg ` M ) ` x ) ) e. B ) -> ( ( 0g ` M ) ( +g ` M ) ( y ( +g ` M ) ( ( invg ` M ) ` x ) ) ) = ( y ( +g ` M ) ( ( invg ` M ) ` x ) ) ) |
| 51 | 6 30 50 | syl2anc | |- ( ( ( M e. Grp /\ S C_ B ) /\ ( x e. ( Z ` S ) /\ y e. S ) ) -> ( ( 0g ` M ) ( +g ` M ) ( y ( +g ` M ) ( ( invg ` M ) ` x ) ) ) = ( y ( +g ` M ) ( ( invg ` M ) ` x ) ) ) |
| 52 | 49 51 | eqtrd | |- ( ( ( M e. Grp /\ S C_ B ) /\ ( x e. ( Z ` S ) /\ y e. S ) ) -> ( ( ( ( invg ` M ) ` x ) ( +g ` M ) x ) ( +g ` M ) ( y ( +g ` M ) ( ( invg ` M ) ` x ) ) ) = ( y ( +g ` M ) ( ( invg ` M ) ` x ) ) ) |
| 53 | 37 46 52 | 3eqtr3d | |- ( ( ( M e. Grp /\ S C_ B ) /\ ( x e. ( Z ` S ) /\ y e. S ) ) -> ( ( ( invg ` M ) ` x ) ( +g ` M ) y ) = ( y ( +g ` M ) ( ( invg ` M ) ` x ) ) ) |
| 54 | 53 | anassrs | |- ( ( ( ( M e. Grp /\ S C_ B ) /\ x e. ( Z ` S ) ) /\ y e. S ) -> ( ( ( invg ` M ) ` x ) ( +g ` M ) y ) = ( y ( +g ` M ) ( ( invg ` M ) ` x ) ) ) |
| 55 | 54 | ralrimiva | |- ( ( ( M e. Grp /\ S C_ B ) /\ x e. ( Z ` S ) ) -> A. y e. S ( ( ( invg ` M ) ` x ) ( +g ` M ) y ) = ( y ( +g ` M ) ( ( invg ` M ) ` x ) ) ) |
| 56 | simplr | |- ( ( ( M e. Grp /\ S C_ B ) /\ x e. ( Z ` S ) ) -> S C_ B ) |
|
| 57 | simpll | |- ( ( ( M e. Grp /\ S C_ B ) /\ x e. ( Z ` S ) ) -> M e. Grp ) |
|
| 58 | simpr | |- ( ( ( M e. Grp /\ S C_ B ) /\ x e. ( Z ` S ) ) -> x e. ( Z ` S ) ) |
|
| 59 | 7 58 | sselid | |- ( ( ( M e. Grp /\ S C_ B ) /\ x e. ( Z ` S ) ) -> x e. B ) |
| 60 | 57 59 11 | syl2anc | |- ( ( ( M e. Grp /\ S C_ B ) /\ x e. ( Z ` S ) ) -> ( ( invg ` M ) ` x ) e. B ) |
| 61 | 1 15 2 | cntzel | |- ( ( S C_ B /\ ( ( invg ` M ) ` x ) e. B ) -> ( ( ( invg ` M ) ` x ) e. ( Z ` S ) <-> A. y e. S ( ( ( invg ` M ) ` x ) ( +g ` M ) y ) = ( y ( +g ` M ) ( ( invg ` M ) ` x ) ) ) ) |
| 62 | 56 60 61 | syl2anc | |- ( ( ( M e. Grp /\ S C_ B ) /\ x e. ( Z ` S ) ) -> ( ( ( invg ` M ) ` x ) e. ( Z ` S ) <-> A. y e. S ( ( ( invg ` M ) ` x ) ( +g ` M ) y ) = ( y ( +g ` M ) ( ( invg ` M ) ` x ) ) ) ) |
| 63 | 55 62 | mpbird | |- ( ( ( M e. Grp /\ S C_ B ) /\ x e. ( Z ` S ) ) -> ( ( invg ` M ) ` x ) e. ( Z ` S ) ) |
| 64 | 63 | ralrimiva | |- ( ( M e. Grp /\ S C_ B ) -> A. x e. ( Z ` S ) ( ( invg ` M ) ` x ) e. ( Z ` S ) ) |
| 65 | 10 | issubg3 | |- ( M e. Grp -> ( ( Z ` S ) e. ( SubGrp ` M ) <-> ( ( Z ` S ) e. ( SubMnd ` M ) /\ A. x e. ( Z ` S ) ( ( invg ` M ) ` x ) e. ( Z ` S ) ) ) ) |
| 66 | 65 | adantr | |- ( ( M e. Grp /\ S C_ B ) -> ( ( Z ` S ) e. ( SubGrp ` M ) <-> ( ( Z ` S ) e. ( SubMnd ` M ) /\ A. x e. ( Z ` S ) ( ( invg ` M ) ` x ) e. ( Z ` S ) ) ) ) |
| 67 | 5 64 66 | mpbir2and | |- ( ( M e. Grp /\ S C_ B ) -> ( Z ` S ) e. ( SubGrp ` M ) ) |