This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commute the "subgroups commute" predicate. (Contributed by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cntzrecd.z | |- Z = ( Cntz ` G ) |
|
| cntzrecd.t | |- ( ph -> T e. ( SubGrp ` G ) ) |
||
| cntzrecd.u | |- ( ph -> U e. ( SubGrp ` G ) ) |
||
| cntzrecd.s | |- ( ph -> T C_ ( Z ` U ) ) |
||
| Assertion | cntzrecd | |- ( ph -> U C_ ( Z ` T ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntzrecd.z | |- Z = ( Cntz ` G ) |
|
| 2 | cntzrecd.t | |- ( ph -> T e. ( SubGrp ` G ) ) |
|
| 3 | cntzrecd.u | |- ( ph -> U e. ( SubGrp ` G ) ) |
|
| 4 | cntzrecd.s | |- ( ph -> T C_ ( Z ` U ) ) |
|
| 5 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 6 | 5 | subgss | |- ( T e. ( SubGrp ` G ) -> T C_ ( Base ` G ) ) |
| 7 | 5 | subgss | |- ( U e. ( SubGrp ` G ) -> U C_ ( Base ` G ) ) |
| 8 | 5 1 | cntzrec | |- ( ( T C_ ( Base ` G ) /\ U C_ ( Base ` G ) ) -> ( T C_ ( Z ` U ) <-> U C_ ( Z ` T ) ) ) |
| 9 | 6 7 8 | syl2an | |- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( T C_ ( Z ` U ) <-> U C_ ( Z ` T ) ) ) |
| 10 | 2 3 9 | syl2anc | |- ( ph -> ( T C_ ( Z ` U ) <-> U C_ ( Z ` T ) ) ) |
| 11 | 4 10 | mpbid | |- ( ph -> U C_ ( Z ` T ) ) |