This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The direct product splits into the direct product of any partition of the index set. (Contributed by Mario Carneiro, 25-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dprdsplit.2 | |- ( ph -> S : I --> ( SubGrp ` G ) ) |
|
| dprdsplit.i | |- ( ph -> ( C i^i D ) = (/) ) |
||
| dprdsplit.u | |- ( ph -> I = ( C u. D ) ) |
||
| dmdprdsplit.z | |- Z = ( Cntz ` G ) |
||
| dmdprdsplit.0 | |- .0. = ( 0g ` G ) |
||
| dmdprdsplit2.1 | |- ( ph -> G dom DProd ( S |` C ) ) |
||
| dmdprdsplit2.2 | |- ( ph -> G dom DProd ( S |` D ) ) |
||
| dmdprdsplit2.3 | |- ( ph -> ( G DProd ( S |` C ) ) C_ ( Z ` ( G DProd ( S |` D ) ) ) ) |
||
| dmdprdsplit2.4 | |- ( ph -> ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) = { .0. } ) |
||
| Assertion | dmdprdsplit2 | |- ( ph -> G dom DProd S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dprdsplit.2 | |- ( ph -> S : I --> ( SubGrp ` G ) ) |
|
| 2 | dprdsplit.i | |- ( ph -> ( C i^i D ) = (/) ) |
|
| 3 | dprdsplit.u | |- ( ph -> I = ( C u. D ) ) |
|
| 4 | dmdprdsplit.z | |- Z = ( Cntz ` G ) |
|
| 5 | dmdprdsplit.0 | |- .0. = ( 0g ` G ) |
|
| 6 | dmdprdsplit2.1 | |- ( ph -> G dom DProd ( S |` C ) ) |
|
| 7 | dmdprdsplit2.2 | |- ( ph -> G dom DProd ( S |` D ) ) |
|
| 8 | dmdprdsplit2.3 | |- ( ph -> ( G DProd ( S |` C ) ) C_ ( Z ` ( G DProd ( S |` D ) ) ) ) |
|
| 9 | dmdprdsplit2.4 | |- ( ph -> ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) = { .0. } ) |
|
| 10 | eqid | |- ( mrCls ` ( SubGrp ` G ) ) = ( mrCls ` ( SubGrp ` G ) ) |
|
| 11 | dprdgrp | |- ( G dom DProd ( S |` C ) -> G e. Grp ) |
|
| 12 | 6 11 | syl | |- ( ph -> G e. Grp ) |
| 13 | ssun1 | |- C C_ ( C u. D ) |
|
| 14 | 13 3 | sseqtrrid | |- ( ph -> C C_ I ) |
| 15 | 1 14 | fssresd | |- ( ph -> ( S |` C ) : C --> ( SubGrp ` G ) ) |
| 16 | 15 | fdmd | |- ( ph -> dom ( S |` C ) = C ) |
| 17 | 6 16 | dprddomcld | |- ( ph -> C e. _V ) |
| 18 | ssun2 | |- D C_ ( C u. D ) |
|
| 19 | 18 3 | sseqtrrid | |- ( ph -> D C_ I ) |
| 20 | 1 19 | fssresd | |- ( ph -> ( S |` D ) : D --> ( SubGrp ` G ) ) |
| 21 | 20 | fdmd | |- ( ph -> dom ( S |` D ) = D ) |
| 22 | 7 21 | dprddomcld | |- ( ph -> D e. _V ) |
| 23 | unexg | |- ( ( C e. _V /\ D e. _V ) -> ( C u. D ) e. _V ) |
|
| 24 | 17 22 23 | syl2anc | |- ( ph -> ( C u. D ) e. _V ) |
| 25 | 3 24 | eqeltrd | |- ( ph -> I e. _V ) |
| 26 | 3 | eleq2d | |- ( ph -> ( x e. I <-> x e. ( C u. D ) ) ) |
| 27 | elun | |- ( x e. ( C u. D ) <-> ( x e. C \/ x e. D ) ) |
|
| 28 | 26 27 | bitrdi | |- ( ph -> ( x e. I <-> ( x e. C \/ x e. D ) ) ) |
| 29 | 1 2 3 4 5 6 7 8 9 10 | dmdprdsplit2lem | |- ( ( ph /\ x e. C ) -> ( ( y e. I -> ( x =/= y -> ( S ` x ) C_ ( Z ` ( S ` y ) ) ) ) /\ ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) ) C_ { .0. } ) ) |
| 30 | incom | |- ( C i^i D ) = ( D i^i C ) |
|
| 31 | 30 2 | eqtr3id | |- ( ph -> ( D i^i C ) = (/) ) |
| 32 | uncom | |- ( C u. D ) = ( D u. C ) |
|
| 33 | 3 32 | eqtrdi | |- ( ph -> I = ( D u. C ) ) |
| 34 | dprdsubg | |- ( G dom DProd ( S |` C ) -> ( G DProd ( S |` C ) ) e. ( SubGrp ` G ) ) |
|
| 35 | 6 34 | syl | |- ( ph -> ( G DProd ( S |` C ) ) e. ( SubGrp ` G ) ) |
| 36 | dprdsubg | |- ( G dom DProd ( S |` D ) -> ( G DProd ( S |` D ) ) e. ( SubGrp ` G ) ) |
|
| 37 | 7 36 | syl | |- ( ph -> ( G DProd ( S |` D ) ) e. ( SubGrp ` G ) ) |
| 38 | 4 35 37 8 | cntzrecd | |- ( ph -> ( G DProd ( S |` D ) ) C_ ( Z ` ( G DProd ( S |` C ) ) ) ) |
| 39 | incom | |- ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) = ( ( G DProd ( S |` D ) ) i^i ( G DProd ( S |` C ) ) ) |
|
| 40 | 39 9 | eqtr3id | |- ( ph -> ( ( G DProd ( S |` D ) ) i^i ( G DProd ( S |` C ) ) ) = { .0. } ) |
| 41 | 1 31 33 4 5 7 6 38 40 10 | dmdprdsplit2lem | |- ( ( ph /\ x e. D ) -> ( ( y e. I -> ( x =/= y -> ( S ` x ) C_ ( Z ` ( S ` y ) ) ) ) /\ ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) ) C_ { .0. } ) ) |
| 42 | 29 41 | jaodan | |- ( ( ph /\ ( x e. C \/ x e. D ) ) -> ( ( y e. I -> ( x =/= y -> ( S ` x ) C_ ( Z ` ( S ` y ) ) ) ) /\ ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) ) C_ { .0. } ) ) |
| 43 | 42 | simpld | |- ( ( ph /\ ( x e. C \/ x e. D ) ) -> ( y e. I -> ( x =/= y -> ( S ` x ) C_ ( Z ` ( S ` y ) ) ) ) ) |
| 44 | 43 | ex | |- ( ph -> ( ( x e. C \/ x e. D ) -> ( y e. I -> ( x =/= y -> ( S ` x ) C_ ( Z ` ( S ` y ) ) ) ) ) ) |
| 45 | 28 44 | sylbid | |- ( ph -> ( x e. I -> ( y e. I -> ( x =/= y -> ( S ` x ) C_ ( Z ` ( S ` y ) ) ) ) ) ) |
| 46 | 45 | 3imp2 | |- ( ( ph /\ ( x e. I /\ y e. I /\ x =/= y ) ) -> ( S ` x ) C_ ( Z ` ( S ` y ) ) ) |
| 47 | 28 | biimpa | |- ( ( ph /\ x e. I ) -> ( x e. C \/ x e. D ) ) |
| 48 | 29 | simprd | |- ( ( ph /\ x e. C ) -> ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) ) C_ { .0. } ) |
| 49 | 41 | simprd | |- ( ( ph /\ x e. D ) -> ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) ) C_ { .0. } ) |
| 50 | 48 49 | jaodan | |- ( ( ph /\ ( x e. C \/ x e. D ) ) -> ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) ) C_ { .0. } ) |
| 51 | 47 50 | syldan | |- ( ( ph /\ x e. I ) -> ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) ) C_ { .0. } ) |
| 52 | 4 5 10 12 25 1 46 51 | dmdprdd | |- ( ph -> G dom DProd S ) |