This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The direct product splits into the direct product of any partition of the index set. (Contributed by Mario Carneiro, 25-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dprdsplit.2 | |- ( ph -> S : I --> ( SubGrp ` G ) ) |
|
| dprdsplit.i | |- ( ph -> ( C i^i D ) = (/) ) |
||
| dprdsplit.u | |- ( ph -> I = ( C u. D ) ) |
||
| dmdprdsplit.z | |- Z = ( Cntz ` G ) |
||
| dmdprdsplit.0 | |- .0. = ( 0g ` G ) |
||
| Assertion | dmdprdsplit | |- ( ph -> ( G dom DProd S <-> ( ( G dom DProd ( S |` C ) /\ G dom DProd ( S |` D ) ) /\ ( G DProd ( S |` C ) ) C_ ( Z ` ( G DProd ( S |` D ) ) ) /\ ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) = { .0. } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dprdsplit.2 | |- ( ph -> S : I --> ( SubGrp ` G ) ) |
|
| 2 | dprdsplit.i | |- ( ph -> ( C i^i D ) = (/) ) |
|
| 3 | dprdsplit.u | |- ( ph -> I = ( C u. D ) ) |
|
| 4 | dmdprdsplit.z | |- Z = ( Cntz ` G ) |
|
| 5 | dmdprdsplit.0 | |- .0. = ( 0g ` G ) |
|
| 6 | simpr | |- ( ( ph /\ G dom DProd S ) -> G dom DProd S ) |
|
| 7 | 1 | fdmd | |- ( ph -> dom S = I ) |
| 8 | 7 | adantr | |- ( ( ph /\ G dom DProd S ) -> dom S = I ) |
| 9 | ssun1 | |- C C_ ( C u. D ) |
|
| 10 | 3 | adantr | |- ( ( ph /\ G dom DProd S ) -> I = ( C u. D ) ) |
| 11 | 9 10 | sseqtrrid | |- ( ( ph /\ G dom DProd S ) -> C C_ I ) |
| 12 | 6 8 11 | dprdres | |- ( ( ph /\ G dom DProd S ) -> ( G dom DProd ( S |` C ) /\ ( G DProd ( S |` C ) ) C_ ( G DProd S ) ) ) |
| 13 | 12 | simpld | |- ( ( ph /\ G dom DProd S ) -> G dom DProd ( S |` C ) ) |
| 14 | ssun2 | |- D C_ ( C u. D ) |
|
| 15 | 14 10 | sseqtrrid | |- ( ( ph /\ G dom DProd S ) -> D C_ I ) |
| 16 | 6 8 15 | dprdres | |- ( ( ph /\ G dom DProd S ) -> ( G dom DProd ( S |` D ) /\ ( G DProd ( S |` D ) ) C_ ( G DProd S ) ) ) |
| 17 | 16 | simpld | |- ( ( ph /\ G dom DProd S ) -> G dom DProd ( S |` D ) ) |
| 18 | 13 17 | jca | |- ( ( ph /\ G dom DProd S ) -> ( G dom DProd ( S |` C ) /\ G dom DProd ( S |` D ) ) ) |
| 19 | 2 | adantr | |- ( ( ph /\ G dom DProd S ) -> ( C i^i D ) = (/) ) |
| 20 | 6 8 11 15 19 4 | dprdcntz2 | |- ( ( ph /\ G dom DProd S ) -> ( G DProd ( S |` C ) ) C_ ( Z ` ( G DProd ( S |` D ) ) ) ) |
| 21 | 6 8 11 15 19 5 | dprddisj2 | |- ( ( ph /\ G dom DProd S ) -> ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) = { .0. } ) |
| 22 | 18 20 21 | 3jca | |- ( ( ph /\ G dom DProd S ) -> ( ( G dom DProd ( S |` C ) /\ G dom DProd ( S |` D ) ) /\ ( G DProd ( S |` C ) ) C_ ( Z ` ( G DProd ( S |` D ) ) ) /\ ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) = { .0. } ) ) |
| 23 | 1 | adantr | |- ( ( ph /\ ( ( G dom DProd ( S |` C ) /\ G dom DProd ( S |` D ) ) /\ ( G DProd ( S |` C ) ) C_ ( Z ` ( G DProd ( S |` D ) ) ) /\ ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) = { .0. } ) ) -> S : I --> ( SubGrp ` G ) ) |
| 24 | 2 | adantr | |- ( ( ph /\ ( ( G dom DProd ( S |` C ) /\ G dom DProd ( S |` D ) ) /\ ( G DProd ( S |` C ) ) C_ ( Z ` ( G DProd ( S |` D ) ) ) /\ ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) = { .0. } ) ) -> ( C i^i D ) = (/) ) |
| 25 | 3 | adantr | |- ( ( ph /\ ( ( G dom DProd ( S |` C ) /\ G dom DProd ( S |` D ) ) /\ ( G DProd ( S |` C ) ) C_ ( Z ` ( G DProd ( S |` D ) ) ) /\ ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) = { .0. } ) ) -> I = ( C u. D ) ) |
| 26 | simpr1l | |- ( ( ph /\ ( ( G dom DProd ( S |` C ) /\ G dom DProd ( S |` D ) ) /\ ( G DProd ( S |` C ) ) C_ ( Z ` ( G DProd ( S |` D ) ) ) /\ ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) = { .0. } ) ) -> G dom DProd ( S |` C ) ) |
|
| 27 | simpr1r | |- ( ( ph /\ ( ( G dom DProd ( S |` C ) /\ G dom DProd ( S |` D ) ) /\ ( G DProd ( S |` C ) ) C_ ( Z ` ( G DProd ( S |` D ) ) ) /\ ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) = { .0. } ) ) -> G dom DProd ( S |` D ) ) |
|
| 28 | simpr2 | |- ( ( ph /\ ( ( G dom DProd ( S |` C ) /\ G dom DProd ( S |` D ) ) /\ ( G DProd ( S |` C ) ) C_ ( Z ` ( G DProd ( S |` D ) ) ) /\ ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) = { .0. } ) ) -> ( G DProd ( S |` C ) ) C_ ( Z ` ( G DProd ( S |` D ) ) ) ) |
|
| 29 | simpr3 | |- ( ( ph /\ ( ( G dom DProd ( S |` C ) /\ G dom DProd ( S |` D ) ) /\ ( G DProd ( S |` C ) ) C_ ( Z ` ( G DProd ( S |` D ) ) ) /\ ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) = { .0. } ) ) -> ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) = { .0. } ) |
|
| 30 | 23 24 25 4 5 26 27 28 29 | dmdprdsplit2 | |- ( ( ph /\ ( ( G dom DProd ( S |` C ) /\ G dom DProd ( S |` D ) ) /\ ( G DProd ( S |` C ) ) C_ ( Z ` ( G DProd ( S |` D ) ) ) /\ ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) = { .0. } ) ) -> G dom DProd S ) |
| 31 | 22 30 | impbida | |- ( ph -> ( G dom DProd S <-> ( ( G dom DProd ( S |` C ) /\ G dom DProd ( S |` D ) ) /\ ( G DProd ( S |` C ) ) C_ ( Z ` ( G DProd ( S |` D ) ) ) /\ ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) = { .0. } ) ) ) |