This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsmcntz.p | |- .(+) = ( LSSum ` G ) |
|
| lsmcntz.s | |- ( ph -> S e. ( SubGrp ` G ) ) |
||
| lsmcntz.t | |- ( ph -> T e. ( SubGrp ` G ) ) |
||
| lsmcntz.u | |- ( ph -> U e. ( SubGrp ` G ) ) |
||
| lsmdisj.o | |- .0. = ( 0g ` G ) |
||
| lsmdisj.i | |- ( ph -> ( ( S .(+) T ) i^i U ) = { .0. } ) |
||
| lsmdisj2.i | |- ( ph -> ( S i^i T ) = { .0. } ) |
||
| lsmdisj3.z | |- Z = ( Cntz ` G ) |
||
| lsmdisj3.s | |- ( ph -> S C_ ( Z ` T ) ) |
||
| Assertion | lsmdisj3 | |- ( ph -> ( S i^i ( T .(+) U ) ) = { .0. } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmcntz.p | |- .(+) = ( LSSum ` G ) |
|
| 2 | lsmcntz.s | |- ( ph -> S e. ( SubGrp ` G ) ) |
|
| 3 | lsmcntz.t | |- ( ph -> T e. ( SubGrp ` G ) ) |
|
| 4 | lsmcntz.u | |- ( ph -> U e. ( SubGrp ` G ) ) |
|
| 5 | lsmdisj.o | |- .0. = ( 0g ` G ) |
|
| 6 | lsmdisj.i | |- ( ph -> ( ( S .(+) T ) i^i U ) = { .0. } ) |
|
| 7 | lsmdisj2.i | |- ( ph -> ( S i^i T ) = { .0. } ) |
|
| 8 | lsmdisj3.z | |- Z = ( Cntz ` G ) |
|
| 9 | lsmdisj3.s | |- ( ph -> S C_ ( Z ` T ) ) |
|
| 10 | 1 8 | lsmcom2 | |- ( ( S e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ S C_ ( Z ` T ) ) -> ( S .(+) T ) = ( T .(+) S ) ) |
| 11 | 2 3 9 10 | syl3anc | |- ( ph -> ( S .(+) T ) = ( T .(+) S ) ) |
| 12 | 11 | ineq1d | |- ( ph -> ( ( S .(+) T ) i^i U ) = ( ( T .(+) S ) i^i U ) ) |
| 13 | 12 6 | eqtr3d | |- ( ph -> ( ( T .(+) S ) i^i U ) = { .0. } ) |
| 14 | incom | |- ( T i^i S ) = ( S i^i T ) |
|
| 15 | 14 7 | eqtrid | |- ( ph -> ( T i^i S ) = { .0. } ) |
| 16 | 1 3 2 4 5 13 15 | lsmdisj2 | |- ( ph -> ( S i^i ( T .(+) U ) ) = { .0. } ) |