This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A version of r19.2z for upper integer quantifiers. (Contributed by Mario Carneiro, 15-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rexuz3.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| Assertion | r19.2uz | ⊢ ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 → ∃ 𝑘 ∈ 𝑍 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexuz3.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | eluzelz | ⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑗 ∈ ℤ ) | |
| 3 | uzid | ⊢ ( 𝑗 ∈ ℤ → 𝑗 ∈ ( ℤ≥ ‘ 𝑗 ) ) | |
| 4 | ne0i | ⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑗 ) → ( ℤ≥ ‘ 𝑗 ) ≠ ∅ ) | |
| 5 | 2 3 4 | 3syl | ⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ℤ≥ ‘ 𝑗 ) ≠ ∅ ) |
| 6 | 5 1 | eleq2s | ⊢ ( 𝑗 ∈ 𝑍 → ( ℤ≥ ‘ 𝑗 ) ≠ ∅ ) |
| 7 | r19.2z | ⊢ ( ( ( ℤ≥ ‘ 𝑗 ) ≠ ∅ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ) → ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ) | |
| 8 | 6 7 | sylan | ⊢ ( ( 𝑗 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ) → ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ) |
| 9 | 1 | uztrn2 | ⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ 𝑍 ) |
| 10 | 9 | ex | ⊢ ( 𝑗 ∈ 𝑍 → ( 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) → 𝑘 ∈ 𝑍 ) ) |
| 11 | 10 | anim1d | ⊢ ( 𝑗 ∈ 𝑍 → ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∧ 𝜑 ) → ( 𝑘 ∈ 𝑍 ∧ 𝜑 ) ) ) |
| 12 | 11 | reximdv2 | ⊢ ( 𝑗 ∈ 𝑍 → ( ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 → ∃ 𝑘 ∈ 𝑍 𝜑 ) ) |
| 13 | 12 | imp | ⊢ ( ( 𝑗 ∈ 𝑍 ∧ ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ) → ∃ 𝑘 ∈ 𝑍 𝜑 ) |
| 14 | 8 13 | syldan | ⊢ ( ( 𝑗 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ) → ∃ 𝑘 ∈ 𝑍 𝜑 ) |
| 15 | 14 | rexlimiva | ⊢ ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 → ∃ 𝑘 ∈ 𝑍 𝜑 ) |