This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The tangent function is greater than its argument on positive reals in its principal domain. (Contributed by Mario Carneiro, 29-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tangtx | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → 𝐴 < ( tan ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elioore | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → 𝐴 ∈ ℝ ) | |
| 2 | 1 | recoscld | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( cos ‘ 𝐴 ) ∈ ℝ ) |
| 3 | 1 2 | remulcld | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( 𝐴 · ( cos ‘ 𝐴 ) ) ∈ ℝ ) |
| 4 | 1re | ⊢ 1 ∈ ℝ | |
| 5 | rehalfcl | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 / 2 ) ∈ ℝ ) | |
| 6 | 1 5 | syl | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( 𝐴 / 2 ) ∈ ℝ ) |
| 7 | 6 | resqcld | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( ( 𝐴 / 2 ) ↑ 2 ) ∈ ℝ ) |
| 8 | 3nn | ⊢ 3 ∈ ℕ | |
| 9 | nndivre | ⊢ ( ( ( ( 𝐴 / 2 ) ↑ 2 ) ∈ ℝ ∧ 3 ∈ ℕ ) → ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ∈ ℝ ) | |
| 10 | 7 8 9 | sylancl | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ∈ ℝ ) |
| 11 | resubcl | ⊢ ( ( 1 ∈ ℝ ∧ ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ∈ ℝ ) → ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ∈ ℝ ) | |
| 12 | 4 10 11 | sylancr | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ∈ ℝ ) |
| 13 | 1 12 | remulcld | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( 𝐴 · ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) ∈ ℝ ) |
| 14 | 2re | ⊢ 2 ∈ ℝ | |
| 15 | remulcl | ⊢ ( ( 2 ∈ ℝ ∧ ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ∈ ℝ ) → ( 2 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ∈ ℝ ) | |
| 16 | 14 10 15 | sylancr | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( 2 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ∈ ℝ ) |
| 17 | resubcl | ⊢ ( ( 1 ∈ ℝ ∧ ( 2 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ∈ ℝ ) → ( 1 − ( 2 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) ∈ ℝ ) | |
| 18 | 4 16 17 | sylancr | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( 1 − ( 2 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) ∈ ℝ ) |
| 19 | 13 18 | remulcld | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( ( 𝐴 · ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) · ( 1 − ( 2 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) ) ∈ ℝ ) |
| 20 | 1 | resincld | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( sin ‘ 𝐴 ) ∈ ℝ ) |
| 21 | 12 | resqcld | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ↑ 2 ) ∈ ℝ ) |
| 22 | remulcl | ⊢ ( ( 2 ∈ ℝ ∧ ( ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ↑ 2 ) ∈ ℝ ) → ( 2 · ( ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ↑ 2 ) ) ∈ ℝ ) | |
| 23 | 14 21 22 | sylancr | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( 2 · ( ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ↑ 2 ) ) ∈ ℝ ) |
| 24 | resubcl | ⊢ ( ( ( 2 · ( ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ↑ 2 ) ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( 2 · ( ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ↑ 2 ) ) − 1 ) ∈ ℝ ) | |
| 25 | 23 4 24 | sylancl | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( ( 2 · ( ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ↑ 2 ) ) − 1 ) ∈ ℝ ) |
| 26 | 12 18 | remulcld | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) · ( 1 − ( 2 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) ) ∈ ℝ ) |
| 27 | 1 | recnd | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → 𝐴 ∈ ℂ ) |
| 28 | 2cn | ⊢ 2 ∈ ℂ | |
| 29 | 28 | a1i | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → 2 ∈ ℂ ) |
| 30 | 2ne0 | ⊢ 2 ≠ 0 | |
| 31 | 30 | a1i | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → 2 ≠ 0 ) |
| 32 | 27 29 31 | divcan2d | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( 2 · ( 𝐴 / 2 ) ) = 𝐴 ) |
| 33 | 32 | fveq2d | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( cos ‘ ( 2 · ( 𝐴 / 2 ) ) ) = ( cos ‘ 𝐴 ) ) |
| 34 | 6 | recnd | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( 𝐴 / 2 ) ∈ ℂ ) |
| 35 | cos2t | ⊢ ( ( 𝐴 / 2 ) ∈ ℂ → ( cos ‘ ( 2 · ( 𝐴 / 2 ) ) ) = ( ( 2 · ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) − 1 ) ) | |
| 36 | 34 35 | syl | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( cos ‘ ( 2 · ( 𝐴 / 2 ) ) ) = ( ( 2 · ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) − 1 ) ) |
| 37 | 33 36 | eqtr3d | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( cos ‘ 𝐴 ) = ( ( 2 · ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) − 1 ) ) |
| 38 | 6 | recoscld | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( cos ‘ ( 𝐴 / 2 ) ) ∈ ℝ ) |
| 39 | 38 | resqcld | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ∈ ℝ ) |
| 40 | remulcl | ⊢ ( ( 2 ∈ ℝ ∧ ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ∈ ℝ ) → ( 2 · ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) ∈ ℝ ) | |
| 41 | 14 39 40 | sylancr | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( 2 · ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) ∈ ℝ ) |
| 42 | 4 | a1i | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → 1 ∈ ℝ ) |
| 43 | 14 | a1i | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → 2 ∈ ℝ ) |
| 44 | eliooord | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( 0 < 𝐴 ∧ 𝐴 < ( π / 2 ) ) ) | |
| 45 | 44 | simpld | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → 0 < 𝐴 ) |
| 46 | 2pos | ⊢ 0 < 2 | |
| 47 | 46 | a1i | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → 0 < 2 ) |
| 48 | 1 43 45 47 | divgt0d | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → 0 < ( 𝐴 / 2 ) ) |
| 49 | pire | ⊢ π ∈ ℝ | |
| 50 | rehalfcl | ⊢ ( π ∈ ℝ → ( π / 2 ) ∈ ℝ ) | |
| 51 | 49 50 | mp1i | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( π / 2 ) ∈ ℝ ) |
| 52 | 44 | simprd | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → 𝐴 < ( π / 2 ) ) |
| 53 | pigt2lt4 | ⊢ ( 2 < π ∧ π < 4 ) | |
| 54 | 53 | simpri | ⊢ π < 4 |
| 55 | 2t2e4 | ⊢ ( 2 · 2 ) = 4 | |
| 56 | 54 55 | breqtrri | ⊢ π < ( 2 · 2 ) |
| 57 | 14 46 | pm3.2i | ⊢ ( 2 ∈ ℝ ∧ 0 < 2 ) |
| 58 | ltdivmul | ⊢ ( ( π ∈ ℝ ∧ 2 ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( ( π / 2 ) < 2 ↔ π < ( 2 · 2 ) ) ) | |
| 59 | 49 14 57 58 | mp3an | ⊢ ( ( π / 2 ) < 2 ↔ π < ( 2 · 2 ) ) |
| 60 | 56 59 | mpbir | ⊢ ( π / 2 ) < 2 |
| 61 | 60 | a1i | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( π / 2 ) < 2 ) |
| 62 | 1 51 43 52 61 | lttrd | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → 𝐴 < 2 ) |
| 63 | 28 | mullidi | ⊢ ( 1 · 2 ) = 2 |
| 64 | 62 63 | breqtrrdi | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → 𝐴 < ( 1 · 2 ) ) |
| 65 | ltdivmul2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( ( 𝐴 / 2 ) < 1 ↔ 𝐴 < ( 1 · 2 ) ) ) | |
| 66 | 1 42 43 47 65 | syl112anc | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( ( 𝐴 / 2 ) < 1 ↔ 𝐴 < ( 1 · 2 ) ) ) |
| 67 | 64 66 | mpbird | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( 𝐴 / 2 ) < 1 ) |
| 68 | 6 42 67 | ltled | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( 𝐴 / 2 ) ≤ 1 ) |
| 69 | 0xr | ⊢ 0 ∈ ℝ* | |
| 70 | elioc2 | ⊢ ( ( 0 ∈ ℝ* ∧ 1 ∈ ℝ ) → ( ( 𝐴 / 2 ) ∈ ( 0 (,] 1 ) ↔ ( ( 𝐴 / 2 ) ∈ ℝ ∧ 0 < ( 𝐴 / 2 ) ∧ ( 𝐴 / 2 ) ≤ 1 ) ) ) | |
| 71 | 69 4 70 | mp2an | ⊢ ( ( 𝐴 / 2 ) ∈ ( 0 (,] 1 ) ↔ ( ( 𝐴 / 2 ) ∈ ℝ ∧ 0 < ( 𝐴 / 2 ) ∧ ( 𝐴 / 2 ) ≤ 1 ) ) |
| 72 | 6 48 68 71 | syl3anbrc | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( 𝐴 / 2 ) ∈ ( 0 (,] 1 ) ) |
| 73 | cos01bnd | ⊢ ( ( 𝐴 / 2 ) ∈ ( 0 (,] 1 ) → ( ( 1 − ( 2 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) < ( cos ‘ ( 𝐴 / 2 ) ) ∧ ( cos ‘ ( 𝐴 / 2 ) ) < ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) ) | |
| 74 | 72 73 | syl | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( ( 1 − ( 2 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) < ( cos ‘ ( 𝐴 / 2 ) ) ∧ ( cos ‘ ( 𝐴 / 2 ) ) < ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) ) |
| 75 | 74 | simprd | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( cos ‘ ( 𝐴 / 2 ) ) < ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) |
| 76 | cos01gt0 | ⊢ ( ( 𝐴 / 2 ) ∈ ( 0 (,] 1 ) → 0 < ( cos ‘ ( 𝐴 / 2 ) ) ) | |
| 77 | 72 76 | syl | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → 0 < ( cos ‘ ( 𝐴 / 2 ) ) ) |
| 78 | 0re | ⊢ 0 ∈ ℝ | |
| 79 | ltle | ⊢ ( ( 0 ∈ ℝ ∧ ( cos ‘ ( 𝐴 / 2 ) ) ∈ ℝ ) → ( 0 < ( cos ‘ ( 𝐴 / 2 ) ) → 0 ≤ ( cos ‘ ( 𝐴 / 2 ) ) ) ) | |
| 80 | 78 38 79 | sylancr | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( 0 < ( cos ‘ ( 𝐴 / 2 ) ) → 0 ≤ ( cos ‘ ( 𝐴 / 2 ) ) ) ) |
| 81 | 77 80 | mpd | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → 0 ≤ ( cos ‘ ( 𝐴 / 2 ) ) ) |
| 82 | 78 | a1i | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → 0 ∈ ℝ ) |
| 83 | 82 38 12 77 75 | lttrd | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → 0 < ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) |
| 84 | 82 12 83 | ltled | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → 0 ≤ ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) |
| 85 | 38 12 81 84 | lt2sqd | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( ( cos ‘ ( 𝐴 / 2 ) ) < ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ↔ ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) < ( ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ↑ 2 ) ) ) |
| 86 | 75 85 | mpbid | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) < ( ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ↑ 2 ) ) |
| 87 | ltmul2 | ⊢ ( ( ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ∈ ℝ ∧ ( ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ↑ 2 ) ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) < ( ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ↑ 2 ) ↔ ( 2 · ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) < ( 2 · ( ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ↑ 2 ) ) ) ) | |
| 88 | 39 21 43 47 87 | syl112anc | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) < ( ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ↑ 2 ) ↔ ( 2 · ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) < ( 2 · ( ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ↑ 2 ) ) ) ) |
| 89 | 86 88 | mpbid | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( 2 · ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) < ( 2 · ( ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ↑ 2 ) ) ) |
| 90 | 41 23 42 89 | ltsub1dd | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( ( 2 · ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) − 1 ) < ( ( 2 · ( ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ↑ 2 ) ) − 1 ) ) |
| 91 | 37 90 | eqbrtrd | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( cos ‘ 𝐴 ) < ( ( 2 · ( ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ↑ 2 ) ) − 1 ) ) |
| 92 | 3re | ⊢ 3 ∈ ℝ | |
| 93 | remulcl | ⊢ ( ( 3 ∈ ℝ ∧ ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ∈ ℝ ) → ( 3 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ∈ ℝ ) | |
| 94 | 92 10 93 | sylancr | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( 3 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ∈ ℝ ) |
| 95 | 4re | ⊢ 4 ∈ ℝ | |
| 96 | remulcl | ⊢ ( ( 4 ∈ ℝ ∧ ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ∈ ℝ ) → ( 4 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ∈ ℝ ) | |
| 97 | 95 10 96 | sylancr | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( 4 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ∈ ℝ ) |
| 98 | 10 | resqcld | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ↑ 2 ) ∈ ℝ ) |
| 99 | remulcl | ⊢ ( ( 2 ∈ ℝ ∧ ( ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ↑ 2 ) ∈ ℝ ) → ( 2 · ( ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ↑ 2 ) ) ∈ ℝ ) | |
| 100 | 14 98 99 | sylancr | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( 2 · ( ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ↑ 2 ) ) ∈ ℝ ) |
| 101 | readdcl | ⊢ ( ( 1 ∈ ℝ ∧ ( 2 · ( ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ↑ 2 ) ) ∈ ℝ ) → ( 1 + ( 2 · ( ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ↑ 2 ) ) ) ∈ ℝ ) | |
| 102 | 4 100 101 | sylancr | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( 1 + ( 2 · ( ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ↑ 2 ) ) ) ∈ ℝ ) |
| 103 | 3lt4 | ⊢ 3 < 4 | |
| 104 | 92 | a1i | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → 3 ∈ ℝ ) |
| 105 | 95 | a1i | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → 4 ∈ ℝ ) |
| 106 | 48 | gt0ne0d | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( 𝐴 / 2 ) ≠ 0 ) |
| 107 | 6 106 | sqgt0d | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → 0 < ( ( 𝐴 / 2 ) ↑ 2 ) ) |
| 108 | 3pos | ⊢ 0 < 3 | |
| 109 | 108 | a1i | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → 0 < 3 ) |
| 110 | 7 104 107 109 | divgt0d | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → 0 < ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) |
| 111 | ltmul1 | ⊢ ( ( 3 ∈ ℝ ∧ 4 ∈ ℝ ∧ ( ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ∈ ℝ ∧ 0 < ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) → ( 3 < 4 ↔ ( 3 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) < ( 4 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) ) | |
| 112 | 104 105 10 110 111 | syl112anc | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( 3 < 4 ↔ ( 3 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) < ( 4 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) ) |
| 113 | 103 112 | mpbii | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( 3 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) < ( 4 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) |
| 114 | 94 97 102 113 | ltsub2dd | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( ( 1 + ( 2 · ( ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ↑ 2 ) ) ) − ( 4 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) < ( ( 1 + ( 2 · ( ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ↑ 2 ) ) ) − ( 3 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) ) |
| 115 | 42 | recnd | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → 1 ∈ ℂ ) |
| 116 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 117 | 100 | recnd | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( 2 · ( ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ↑ 2 ) ) ∈ ℂ ) |
| 118 | addcl | ⊢ ( ( 1 ∈ ℂ ∧ ( 2 · ( ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ↑ 2 ) ) ∈ ℂ ) → ( 1 + ( 2 · ( ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ↑ 2 ) ) ) ∈ ℂ ) | |
| 119 | 116 117 118 | sylancr | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( 1 + ( 2 · ( ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ↑ 2 ) ) ) ∈ ℂ ) |
| 120 | 97 | recnd | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( 4 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ∈ ℂ ) |
| 121 | 119 120 | subcld | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( ( 1 + ( 2 · ( ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ↑ 2 ) ) ) − ( 4 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) ∈ ℂ ) |
| 122 | sq1 | ⊢ ( 1 ↑ 2 ) = 1 | |
| 123 | 122 | a1i | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( 1 ↑ 2 ) = 1 ) |
| 124 | 10 | recnd | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ∈ ℂ ) |
| 125 | 124 | mullidd | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( 1 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) = ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) |
| 126 | 125 | oveq2d | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( 2 · ( 1 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) = ( 2 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) |
| 127 | 123 126 | oveq12d | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( ( 1 ↑ 2 ) − ( 2 · ( 1 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) ) = ( 1 − ( 2 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) ) |
| 128 | 127 | oveq1d | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( ( ( 1 ↑ 2 ) − ( 2 · ( 1 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) ) + ( ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ↑ 2 ) ) = ( ( 1 − ( 2 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) + ( ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ↑ 2 ) ) ) |
| 129 | binom2sub | ⊢ ( ( 1 ∈ ℂ ∧ ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ∈ ℂ ) → ( ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ↑ 2 ) = ( ( ( 1 ↑ 2 ) − ( 2 · ( 1 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) ) + ( ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ↑ 2 ) ) ) | |
| 130 | 116 124 129 | sylancr | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ↑ 2 ) = ( ( ( 1 ↑ 2 ) − ( 2 · ( 1 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) ) + ( ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ↑ 2 ) ) ) |
| 131 | 98 | recnd | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ↑ 2 ) ∈ ℂ ) |
| 132 | 16 | recnd | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( 2 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ∈ ℂ ) |
| 133 | 115 131 132 | addsubd | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( ( 1 + ( ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ↑ 2 ) ) − ( 2 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) = ( ( 1 − ( 2 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) + ( ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ↑ 2 ) ) ) |
| 134 | 128 130 133 | 3eqtr4d | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ↑ 2 ) = ( ( 1 + ( ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ↑ 2 ) ) − ( 2 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) ) |
| 135 | 134 | oveq2d | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( 2 · ( ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ↑ 2 ) ) = ( 2 · ( ( 1 + ( ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ↑ 2 ) ) − ( 2 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) ) ) |
| 136 | addcl | ⊢ ( ( 1 ∈ ℂ ∧ ( ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ↑ 2 ) ∈ ℂ ) → ( 1 + ( ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ↑ 2 ) ) ∈ ℂ ) | |
| 137 | 116 131 136 | sylancr | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( 1 + ( ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ↑ 2 ) ) ∈ ℂ ) |
| 138 | 29 137 132 | subdid | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( 2 · ( ( 1 + ( ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ↑ 2 ) ) − ( 2 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) ) = ( ( 2 · ( 1 + ( ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ↑ 2 ) ) ) − ( 2 · ( 2 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) ) ) |
| 139 | 29 115 131 | adddid | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( 2 · ( 1 + ( ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ↑ 2 ) ) ) = ( ( 2 · 1 ) + ( 2 · ( ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ↑ 2 ) ) ) ) |
| 140 | 116 | 2timesi | ⊢ ( 2 · 1 ) = ( 1 + 1 ) |
| 141 | 140 | oveq1i | ⊢ ( ( 2 · 1 ) + ( 2 · ( ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ↑ 2 ) ) ) = ( ( 1 + 1 ) + ( 2 · ( ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ↑ 2 ) ) ) |
| 142 | 115 115 117 | addassd | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( ( 1 + 1 ) + ( 2 · ( ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ↑ 2 ) ) ) = ( 1 + ( 1 + ( 2 · ( ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ↑ 2 ) ) ) ) ) |
| 143 | 141 142 | eqtrid | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( ( 2 · 1 ) + ( 2 · ( ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ↑ 2 ) ) ) = ( 1 + ( 1 + ( 2 · ( ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ↑ 2 ) ) ) ) ) |
| 144 | 139 143 | eqtrd | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( 2 · ( 1 + ( ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ↑ 2 ) ) ) = ( 1 + ( 1 + ( 2 · ( ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ↑ 2 ) ) ) ) ) |
| 145 | 29 29 124 | mulassd | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( ( 2 · 2 ) · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) = ( 2 · ( 2 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) ) |
| 146 | 55 | oveq1i | ⊢ ( ( 2 · 2 ) · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) = ( 4 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) |
| 147 | 145 146 | eqtr3di | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( 2 · ( 2 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) = ( 4 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) |
| 148 | 144 147 | oveq12d | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( ( 2 · ( 1 + ( ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ↑ 2 ) ) ) − ( 2 · ( 2 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) ) = ( ( 1 + ( 1 + ( 2 · ( ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ↑ 2 ) ) ) ) − ( 4 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) ) |
| 149 | 115 119 120 148 | assraddsubd | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( ( 2 · ( 1 + ( ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ↑ 2 ) ) ) − ( 2 · ( 2 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) ) = ( 1 + ( ( 1 + ( 2 · ( ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ↑ 2 ) ) ) − ( 4 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) ) ) |
| 150 | 135 138 149 | 3eqtrd | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( 2 · ( ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ↑ 2 ) ) = ( 1 + ( ( 1 + ( 2 · ( ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ↑ 2 ) ) ) − ( 4 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) ) ) |
| 151 | 115 121 150 | mvrladdd | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( ( 2 · ( ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ↑ 2 ) ) − 1 ) = ( ( 1 + ( 2 · ( ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ↑ 2 ) ) ) − ( 4 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) ) |
| 152 | subcl | ⊢ ( ( 1 ∈ ℂ ∧ ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ∈ ℂ ) → ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ∈ ℂ ) | |
| 153 | 116 124 152 | sylancr | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ∈ ℂ ) |
| 154 | 153 115 132 | subdid | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) · ( 1 − ( 2 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) ) = ( ( ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) · 1 ) − ( ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) · ( 2 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) ) ) |
| 155 | 153 | mulridd | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) · 1 ) = ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) |
| 156 | 115 124 132 | subdird | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) · ( 2 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) = ( ( 1 · ( 2 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) − ( ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) · ( 2 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) ) ) |
| 157 | 132 | mullidd | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( 1 · ( 2 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) = ( 2 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) |
| 158 | 124 29 124 | mul12d | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) · ( 2 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) = ( 2 · ( ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) ) |
| 159 | 124 | sqvald | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ↑ 2 ) = ( ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) |
| 160 | 159 | oveq2d | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( 2 · ( ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ↑ 2 ) ) = ( 2 · ( ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) ) |
| 161 | 158 160 | eqtr4d | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) · ( 2 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) = ( 2 · ( ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ↑ 2 ) ) ) |
| 162 | 157 161 | oveq12d | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( ( 1 · ( 2 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) − ( ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) · ( 2 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) ) = ( ( 2 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) − ( 2 · ( ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ↑ 2 ) ) ) ) |
| 163 | 156 162 | eqtrd | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) · ( 2 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) = ( ( 2 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) − ( 2 · ( ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ↑ 2 ) ) ) ) |
| 164 | 155 163 | oveq12d | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( ( ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) · 1 ) − ( ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) · ( 2 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) ) = ( ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) − ( ( 2 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) − ( 2 · ( ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ↑ 2 ) ) ) ) ) |
| 165 | 115 124 132 117 | subadd4d | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) − ( ( 2 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) − ( 2 · ( ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ↑ 2 ) ) ) ) = ( ( 1 + ( 2 · ( ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ↑ 2 ) ) ) − ( ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) + ( 2 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) ) ) |
| 166 | df-3 | ⊢ 3 = ( 2 + 1 ) | |
| 167 | 28 116 | addcomi | ⊢ ( 2 + 1 ) = ( 1 + 2 ) |
| 168 | 166 167 | eqtri | ⊢ 3 = ( 1 + 2 ) |
| 169 | 168 | oveq1i | ⊢ ( 3 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) = ( ( 1 + 2 ) · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) |
| 170 | 125 | oveq1d | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( ( 1 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) + ( 2 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) = ( ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) + ( 2 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) ) |
| 171 | 115 124 29 170 | joinlmuladdmuld | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( ( 1 + 2 ) · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) = ( ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) + ( 2 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) ) |
| 172 | 169 171 | eqtrid | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( 3 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) = ( ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) + ( 2 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) ) |
| 173 | 172 | oveq2d | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( ( 1 + ( 2 · ( ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ↑ 2 ) ) ) − ( 3 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) = ( ( 1 + ( 2 · ( ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ↑ 2 ) ) ) − ( ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) + ( 2 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) ) ) |
| 174 | 165 173 | eqtr4d | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) − ( ( 2 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) − ( 2 · ( ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ↑ 2 ) ) ) ) = ( ( 1 + ( 2 · ( ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ↑ 2 ) ) ) − ( 3 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) ) |
| 175 | 154 164 174 | 3eqtrd | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) · ( 1 − ( 2 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) ) = ( ( 1 + ( 2 · ( ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ↑ 2 ) ) ) − ( 3 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) ) |
| 176 | 114 151 175 | 3brtr4d | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( ( 2 · ( ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ↑ 2 ) ) − 1 ) < ( ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) · ( 1 − ( 2 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) ) ) |
| 177 | 2 25 26 91 176 | lttrd | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( cos ‘ 𝐴 ) < ( ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) · ( 1 − ( 2 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) ) ) |
| 178 | ltmul2 | ⊢ ( ( ( cos ‘ 𝐴 ) ∈ ℝ ∧ ( ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) · ( 1 − ( 2 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) ) ∈ ℝ ∧ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) → ( ( cos ‘ 𝐴 ) < ( ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) · ( 1 − ( 2 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) ) ↔ ( 𝐴 · ( cos ‘ 𝐴 ) ) < ( 𝐴 · ( ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) · ( 1 − ( 2 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) ) ) ) ) | |
| 179 | 2 26 1 45 178 | syl112anc | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( ( cos ‘ 𝐴 ) < ( ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) · ( 1 − ( 2 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) ) ↔ ( 𝐴 · ( cos ‘ 𝐴 ) ) < ( 𝐴 · ( ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) · ( 1 − ( 2 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) ) ) ) ) |
| 180 | 177 179 | mpbid | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( 𝐴 · ( cos ‘ 𝐴 ) ) < ( 𝐴 · ( ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) · ( 1 − ( 2 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) ) ) ) |
| 181 | 18 | recnd | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( 1 − ( 2 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) ∈ ℂ ) |
| 182 | 27 153 181 | mulassd | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( ( 𝐴 · ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) · ( 1 − ( 2 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) ) = ( 𝐴 · ( ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) · ( 1 − ( 2 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) ) ) ) |
| 183 | 180 182 | breqtrrd | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( 𝐴 · ( cos ‘ 𝐴 ) ) < ( ( 𝐴 · ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) · ( 1 − ( 2 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) ) ) |
| 184 | 13 38 | remulcld | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( ( 𝐴 · ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) · ( cos ‘ ( 𝐴 / 2 ) ) ) ∈ ℝ ) |
| 185 | 74 | simpld | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( 1 − ( 2 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) < ( cos ‘ ( 𝐴 / 2 ) ) ) |
| 186 | 1 12 45 83 | mulgt0d | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → 0 < ( 𝐴 · ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) ) |
| 187 | ltmul2 | ⊢ ( ( ( 1 − ( 2 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) ∈ ℝ ∧ ( cos ‘ ( 𝐴 / 2 ) ) ∈ ℝ ∧ ( ( 𝐴 · ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) ∈ ℝ ∧ 0 < ( 𝐴 · ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) ) ) → ( ( 1 − ( 2 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) < ( cos ‘ ( 𝐴 / 2 ) ) ↔ ( ( 𝐴 · ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) · ( 1 − ( 2 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) ) < ( ( 𝐴 · ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) · ( cos ‘ ( 𝐴 / 2 ) ) ) ) ) | |
| 188 | 18 38 13 186 187 | syl112anc | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( ( 1 − ( 2 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) < ( cos ‘ ( 𝐴 / 2 ) ) ↔ ( ( 𝐴 · ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) · ( 1 − ( 2 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) ) < ( ( 𝐴 · ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) · ( cos ‘ ( 𝐴 / 2 ) ) ) ) ) |
| 189 | 185 188 | mpbid | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( ( 𝐴 · ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) · ( 1 − ( 2 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) ) < ( ( 𝐴 · ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) · ( cos ‘ ( 𝐴 / 2 ) ) ) ) |
| 190 | 29 34 153 | mulassd | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( ( 2 · ( 𝐴 / 2 ) ) · ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) = ( 2 · ( ( 𝐴 / 2 ) · ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) ) ) |
| 191 | 32 | oveq1d | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( ( 2 · ( 𝐴 / 2 ) ) · ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) = ( 𝐴 · ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) ) |
| 192 | 34 115 124 | subdid | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( ( 𝐴 / 2 ) · ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) = ( ( ( 𝐴 / 2 ) · 1 ) − ( ( 𝐴 / 2 ) · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) ) |
| 193 | 34 | mulridd | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( ( 𝐴 / 2 ) · 1 ) = ( 𝐴 / 2 ) ) |
| 194 | 166 | oveq2i | ⊢ ( ( 𝐴 / 2 ) ↑ 3 ) = ( ( 𝐴 / 2 ) ↑ ( 2 + 1 ) ) |
| 195 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 196 | expp1 | ⊢ ( ( ( 𝐴 / 2 ) ∈ ℂ ∧ 2 ∈ ℕ0 ) → ( ( 𝐴 / 2 ) ↑ ( 2 + 1 ) ) = ( ( ( 𝐴 / 2 ) ↑ 2 ) · ( 𝐴 / 2 ) ) ) | |
| 197 | 34 195 196 | sylancl | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( ( 𝐴 / 2 ) ↑ ( 2 + 1 ) ) = ( ( ( 𝐴 / 2 ) ↑ 2 ) · ( 𝐴 / 2 ) ) ) |
| 198 | 194 197 | eqtrid | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( ( 𝐴 / 2 ) ↑ 3 ) = ( ( ( 𝐴 / 2 ) ↑ 2 ) · ( 𝐴 / 2 ) ) ) |
| 199 | 7 | recnd | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( ( 𝐴 / 2 ) ↑ 2 ) ∈ ℂ ) |
| 200 | 199 34 | mulcomd | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( ( ( 𝐴 / 2 ) ↑ 2 ) · ( 𝐴 / 2 ) ) = ( ( 𝐴 / 2 ) · ( ( 𝐴 / 2 ) ↑ 2 ) ) ) |
| 201 | 198 200 | eqtrd | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( ( 𝐴 / 2 ) ↑ 3 ) = ( ( 𝐴 / 2 ) · ( ( 𝐴 / 2 ) ↑ 2 ) ) ) |
| 202 | 201 | oveq1d | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( ( ( 𝐴 / 2 ) ↑ 3 ) / 3 ) = ( ( ( 𝐴 / 2 ) · ( ( 𝐴 / 2 ) ↑ 2 ) ) / 3 ) ) |
| 203 | 3cn | ⊢ 3 ∈ ℂ | |
| 204 | 203 | a1i | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → 3 ∈ ℂ ) |
| 205 | 3ne0 | ⊢ 3 ≠ 0 | |
| 206 | 205 | a1i | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → 3 ≠ 0 ) |
| 207 | 34 199 204 206 | divassd | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( ( ( 𝐴 / 2 ) · ( ( 𝐴 / 2 ) ↑ 2 ) ) / 3 ) = ( ( 𝐴 / 2 ) · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) |
| 208 | 202 207 | eqtr2d | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( ( 𝐴 / 2 ) · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) = ( ( ( 𝐴 / 2 ) ↑ 3 ) / 3 ) ) |
| 209 | 193 208 | oveq12d | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( ( ( 𝐴 / 2 ) · 1 ) − ( ( 𝐴 / 2 ) · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) = ( ( 𝐴 / 2 ) − ( ( ( 𝐴 / 2 ) ↑ 3 ) / 3 ) ) ) |
| 210 | 192 209 | eqtrd | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( ( 𝐴 / 2 ) · ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) = ( ( 𝐴 / 2 ) − ( ( ( 𝐴 / 2 ) ↑ 3 ) / 3 ) ) ) |
| 211 | 210 | oveq2d | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( 2 · ( ( 𝐴 / 2 ) · ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) ) = ( 2 · ( ( 𝐴 / 2 ) − ( ( ( 𝐴 / 2 ) ↑ 3 ) / 3 ) ) ) ) |
| 212 | 190 191 211 | 3eqtr3d | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( 𝐴 · ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) = ( 2 · ( ( 𝐴 / 2 ) − ( ( ( 𝐴 / 2 ) ↑ 3 ) / 3 ) ) ) ) |
| 213 | sin01bnd | ⊢ ( ( 𝐴 / 2 ) ∈ ( 0 (,] 1 ) → ( ( ( 𝐴 / 2 ) − ( ( ( 𝐴 / 2 ) ↑ 3 ) / 3 ) ) < ( sin ‘ ( 𝐴 / 2 ) ) ∧ ( sin ‘ ( 𝐴 / 2 ) ) < ( 𝐴 / 2 ) ) ) | |
| 214 | 72 213 | syl | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( ( ( 𝐴 / 2 ) − ( ( ( 𝐴 / 2 ) ↑ 3 ) / 3 ) ) < ( sin ‘ ( 𝐴 / 2 ) ) ∧ ( sin ‘ ( 𝐴 / 2 ) ) < ( 𝐴 / 2 ) ) ) |
| 215 | 214 | simpld | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( ( 𝐴 / 2 ) − ( ( ( 𝐴 / 2 ) ↑ 3 ) / 3 ) ) < ( sin ‘ ( 𝐴 / 2 ) ) ) |
| 216 | 3nn0 | ⊢ 3 ∈ ℕ0 | |
| 217 | reexpcl | ⊢ ( ( ( 𝐴 / 2 ) ∈ ℝ ∧ 3 ∈ ℕ0 ) → ( ( 𝐴 / 2 ) ↑ 3 ) ∈ ℝ ) | |
| 218 | 6 216 217 | sylancl | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( ( 𝐴 / 2 ) ↑ 3 ) ∈ ℝ ) |
| 219 | nndivre | ⊢ ( ( ( ( 𝐴 / 2 ) ↑ 3 ) ∈ ℝ ∧ 3 ∈ ℕ ) → ( ( ( 𝐴 / 2 ) ↑ 3 ) / 3 ) ∈ ℝ ) | |
| 220 | 218 8 219 | sylancl | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( ( ( 𝐴 / 2 ) ↑ 3 ) / 3 ) ∈ ℝ ) |
| 221 | 6 220 | resubcld | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( ( 𝐴 / 2 ) − ( ( ( 𝐴 / 2 ) ↑ 3 ) / 3 ) ) ∈ ℝ ) |
| 222 | 6 | resincld | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( sin ‘ ( 𝐴 / 2 ) ) ∈ ℝ ) |
| 223 | ltmul2 | ⊢ ( ( ( ( 𝐴 / 2 ) − ( ( ( 𝐴 / 2 ) ↑ 3 ) / 3 ) ) ∈ ℝ ∧ ( sin ‘ ( 𝐴 / 2 ) ) ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( ( ( 𝐴 / 2 ) − ( ( ( 𝐴 / 2 ) ↑ 3 ) / 3 ) ) < ( sin ‘ ( 𝐴 / 2 ) ) ↔ ( 2 · ( ( 𝐴 / 2 ) − ( ( ( 𝐴 / 2 ) ↑ 3 ) / 3 ) ) ) < ( 2 · ( sin ‘ ( 𝐴 / 2 ) ) ) ) ) | |
| 224 | 221 222 43 47 223 | syl112anc | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( ( ( 𝐴 / 2 ) − ( ( ( 𝐴 / 2 ) ↑ 3 ) / 3 ) ) < ( sin ‘ ( 𝐴 / 2 ) ) ↔ ( 2 · ( ( 𝐴 / 2 ) − ( ( ( 𝐴 / 2 ) ↑ 3 ) / 3 ) ) ) < ( 2 · ( sin ‘ ( 𝐴 / 2 ) ) ) ) ) |
| 225 | 215 224 | mpbid | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( 2 · ( ( 𝐴 / 2 ) − ( ( ( 𝐴 / 2 ) ↑ 3 ) / 3 ) ) ) < ( 2 · ( sin ‘ ( 𝐴 / 2 ) ) ) ) |
| 226 | 212 225 | eqbrtrd | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( 𝐴 · ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) < ( 2 · ( sin ‘ ( 𝐴 / 2 ) ) ) ) |
| 227 | remulcl | ⊢ ( ( 2 ∈ ℝ ∧ ( sin ‘ ( 𝐴 / 2 ) ) ∈ ℝ ) → ( 2 · ( sin ‘ ( 𝐴 / 2 ) ) ) ∈ ℝ ) | |
| 228 | 14 222 227 | sylancr | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( 2 · ( sin ‘ ( 𝐴 / 2 ) ) ) ∈ ℝ ) |
| 229 | ltmul1 | ⊢ ( ( ( 𝐴 · ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) ∈ ℝ ∧ ( 2 · ( sin ‘ ( 𝐴 / 2 ) ) ) ∈ ℝ ∧ ( ( cos ‘ ( 𝐴 / 2 ) ) ∈ ℝ ∧ 0 < ( cos ‘ ( 𝐴 / 2 ) ) ) ) → ( ( 𝐴 · ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) < ( 2 · ( sin ‘ ( 𝐴 / 2 ) ) ) ↔ ( ( 𝐴 · ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) · ( cos ‘ ( 𝐴 / 2 ) ) ) < ( ( 2 · ( sin ‘ ( 𝐴 / 2 ) ) ) · ( cos ‘ ( 𝐴 / 2 ) ) ) ) ) | |
| 230 | 13 228 38 77 229 | syl112anc | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( ( 𝐴 · ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) < ( 2 · ( sin ‘ ( 𝐴 / 2 ) ) ) ↔ ( ( 𝐴 · ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) · ( cos ‘ ( 𝐴 / 2 ) ) ) < ( ( 2 · ( sin ‘ ( 𝐴 / 2 ) ) ) · ( cos ‘ ( 𝐴 / 2 ) ) ) ) ) |
| 231 | 226 230 | mpbid | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( ( 𝐴 · ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) · ( cos ‘ ( 𝐴 / 2 ) ) ) < ( ( 2 · ( sin ‘ ( 𝐴 / 2 ) ) ) · ( cos ‘ ( 𝐴 / 2 ) ) ) ) |
| 232 | 222 | recnd | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( sin ‘ ( 𝐴 / 2 ) ) ∈ ℂ ) |
| 233 | 38 | recnd | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( cos ‘ ( 𝐴 / 2 ) ) ∈ ℂ ) |
| 234 | 29 232 233 | mulassd | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( ( 2 · ( sin ‘ ( 𝐴 / 2 ) ) ) · ( cos ‘ ( 𝐴 / 2 ) ) ) = ( 2 · ( ( sin ‘ ( 𝐴 / 2 ) ) · ( cos ‘ ( 𝐴 / 2 ) ) ) ) ) |
| 235 | sin2t | ⊢ ( ( 𝐴 / 2 ) ∈ ℂ → ( sin ‘ ( 2 · ( 𝐴 / 2 ) ) ) = ( 2 · ( ( sin ‘ ( 𝐴 / 2 ) ) · ( cos ‘ ( 𝐴 / 2 ) ) ) ) ) | |
| 236 | 34 235 | syl | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( sin ‘ ( 2 · ( 𝐴 / 2 ) ) ) = ( 2 · ( ( sin ‘ ( 𝐴 / 2 ) ) · ( cos ‘ ( 𝐴 / 2 ) ) ) ) ) |
| 237 | 32 | fveq2d | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( sin ‘ ( 2 · ( 𝐴 / 2 ) ) ) = ( sin ‘ 𝐴 ) ) |
| 238 | 234 236 237 | 3eqtr2rd | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( sin ‘ 𝐴 ) = ( ( 2 · ( sin ‘ ( 𝐴 / 2 ) ) ) · ( cos ‘ ( 𝐴 / 2 ) ) ) ) |
| 239 | 231 238 | breqtrrd | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( ( 𝐴 · ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) · ( cos ‘ ( 𝐴 / 2 ) ) ) < ( sin ‘ 𝐴 ) ) |
| 240 | 19 184 20 189 239 | lttrd | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( ( 𝐴 · ( 1 − ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) · ( 1 − ( 2 · ( ( ( 𝐴 / 2 ) ↑ 2 ) / 3 ) ) ) ) < ( sin ‘ 𝐴 ) ) |
| 241 | 3 19 20 183 240 | lttrd | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( 𝐴 · ( cos ‘ 𝐴 ) ) < ( sin ‘ 𝐴 ) ) |
| 242 | sincosq1sgn | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( 0 < ( sin ‘ 𝐴 ) ∧ 0 < ( cos ‘ 𝐴 ) ) ) | |
| 243 | 242 | simprd | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → 0 < ( cos ‘ 𝐴 ) ) |
| 244 | ltmuldiv | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( sin ‘ 𝐴 ) ∈ ℝ ∧ ( ( cos ‘ 𝐴 ) ∈ ℝ ∧ 0 < ( cos ‘ 𝐴 ) ) ) → ( ( 𝐴 · ( cos ‘ 𝐴 ) ) < ( sin ‘ 𝐴 ) ↔ 𝐴 < ( ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) ) ) | |
| 245 | 1 20 2 243 244 | syl112anc | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( ( 𝐴 · ( cos ‘ 𝐴 ) ) < ( sin ‘ 𝐴 ) ↔ 𝐴 < ( ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) ) ) |
| 246 | 241 245 | mpbid | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → 𝐴 < ( ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) ) |
| 247 | 243 | gt0ne0d | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( cos ‘ 𝐴 ) ≠ 0 ) |
| 248 | tanval | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( tan ‘ 𝐴 ) = ( ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) ) | |
| 249 | 27 247 248 | syl2anc | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( tan ‘ 𝐴 ) = ( ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) ) |
| 250 | 246 249 | breqtrrd | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → 𝐴 < ( tan ‘ 𝐴 ) ) |