This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Double-angle formula for sine. (Contributed by Paul Chapman, 17-Jan-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sin2t | ⊢ ( 𝐴 ∈ ℂ → ( sin ‘ ( 2 · 𝐴 ) ) = ( 2 · ( ( sin ‘ 𝐴 ) · ( cos ‘ 𝐴 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2times | ⊢ ( 𝐴 ∈ ℂ → ( 2 · 𝐴 ) = ( 𝐴 + 𝐴 ) ) | |
| 2 | 1 | fveq2d | ⊢ ( 𝐴 ∈ ℂ → ( sin ‘ ( 2 · 𝐴 ) ) = ( sin ‘ ( 𝐴 + 𝐴 ) ) ) |
| 3 | coscl | ⊢ ( 𝐴 ∈ ℂ → ( cos ‘ 𝐴 ) ∈ ℂ ) | |
| 4 | sincl | ⊢ ( 𝐴 ∈ ℂ → ( sin ‘ 𝐴 ) ∈ ℂ ) | |
| 5 | 3 4 | mulcomd | ⊢ ( 𝐴 ∈ ℂ → ( ( cos ‘ 𝐴 ) · ( sin ‘ 𝐴 ) ) = ( ( sin ‘ 𝐴 ) · ( cos ‘ 𝐴 ) ) ) |
| 6 | 5 | oveq2d | ⊢ ( 𝐴 ∈ ℂ → ( ( ( sin ‘ 𝐴 ) · ( cos ‘ 𝐴 ) ) + ( ( cos ‘ 𝐴 ) · ( sin ‘ 𝐴 ) ) ) = ( ( ( sin ‘ 𝐴 ) · ( cos ‘ 𝐴 ) ) + ( ( sin ‘ 𝐴 ) · ( cos ‘ 𝐴 ) ) ) ) |
| 7 | sinadd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( sin ‘ ( 𝐴 + 𝐴 ) ) = ( ( ( sin ‘ 𝐴 ) · ( cos ‘ 𝐴 ) ) + ( ( cos ‘ 𝐴 ) · ( sin ‘ 𝐴 ) ) ) ) | |
| 8 | 7 | anidms | ⊢ ( 𝐴 ∈ ℂ → ( sin ‘ ( 𝐴 + 𝐴 ) ) = ( ( ( sin ‘ 𝐴 ) · ( cos ‘ 𝐴 ) ) + ( ( cos ‘ 𝐴 ) · ( sin ‘ 𝐴 ) ) ) ) |
| 9 | 4 3 | mulcld | ⊢ ( 𝐴 ∈ ℂ → ( ( sin ‘ 𝐴 ) · ( cos ‘ 𝐴 ) ) ∈ ℂ ) |
| 10 | 9 | 2timesd | ⊢ ( 𝐴 ∈ ℂ → ( 2 · ( ( sin ‘ 𝐴 ) · ( cos ‘ 𝐴 ) ) ) = ( ( ( sin ‘ 𝐴 ) · ( cos ‘ 𝐴 ) ) + ( ( sin ‘ 𝐴 ) · ( cos ‘ 𝐴 ) ) ) ) |
| 11 | 6 8 10 | 3eqtr4d | ⊢ ( 𝐴 ∈ ℂ → ( sin ‘ ( 𝐴 + 𝐴 ) ) = ( 2 · ( ( sin ‘ 𝐴 ) · ( cos ‘ 𝐴 ) ) ) ) |
| 12 | 2 11 | eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( sin ‘ ( 2 · 𝐴 ) ) = ( 2 · ( ( sin ‘ 𝐴 ) · ( cos ‘ 𝐴 ) ) ) ) |