This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of Apostol p. 20. (Contributed by NM, 13-Feb-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltmul2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( 𝐴 < 𝐵 ↔ ( 𝐶 · 𝐴 ) < ( 𝐶 · 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltmul1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( 𝐴 < 𝐵 ↔ ( 𝐴 · 𝐶 ) < ( 𝐵 · 𝐶 ) ) ) | |
| 2 | recn | ⊢ ( 𝐶 ∈ ℝ → 𝐶 ∈ ℂ ) | |
| 3 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 4 | mulcom | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 · 𝐶 ) = ( 𝐶 · 𝐴 ) ) | |
| 5 | 3 4 | sylan | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 · 𝐶 ) = ( 𝐶 · 𝐴 ) ) |
| 6 | 5 | 3adant2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 · 𝐶 ) = ( 𝐶 · 𝐴 ) ) |
| 7 | recn | ⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) | |
| 8 | mulcom | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 · 𝐶 ) = ( 𝐶 · 𝐵 ) ) | |
| 9 | 7 8 | sylan | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 · 𝐶 ) = ( 𝐶 · 𝐵 ) ) |
| 10 | 9 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 · 𝐶 ) = ( 𝐶 · 𝐵 ) ) |
| 11 | 6 10 | breq12d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 · 𝐶 ) < ( 𝐵 · 𝐶 ) ↔ ( 𝐶 · 𝐴 ) < ( 𝐶 · 𝐵 ) ) ) |
| 12 | 2 11 | syl3an3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 · 𝐶 ) < ( 𝐵 · 𝐶 ) ↔ ( 𝐶 · 𝐴 ) < ( 𝐶 · 𝐵 ) ) ) |
| 13 | 12 | 3adant3r | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( ( 𝐴 · 𝐶 ) < ( 𝐵 · 𝐶 ) ↔ ( 𝐶 · 𝐴 ) < ( 𝐶 · 𝐵 ) ) ) |
| 14 | 1 13 | bitrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( 𝐴 < 𝐵 ↔ ( 𝐶 · 𝐴 ) < ( 𝐶 · 𝐵 ) ) ) |