This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Bounds on the sine of a positive real number less than or equal to 1. (Contributed by Paul Chapman, 19-Jan-2008) (Revised by Mario Carneiro, 30-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sin01bnd | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 3 ) ) < ( sin ‘ 𝐴 ) ∧ ( sin ‘ 𝐴 ) < 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0xr | ⊢ 0 ∈ ℝ* | |
| 2 | 1re | ⊢ 1 ∈ ℝ | |
| 3 | elioc2 | ⊢ ( ( 0 ∈ ℝ* ∧ 1 ∈ ℝ ) → ( 𝐴 ∈ ( 0 (,] 1 ) ↔ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 ≤ 1 ) ) ) | |
| 4 | 1 2 3 | mp2an | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) ↔ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 ≤ 1 ) ) |
| 5 | 4 | simp1bi | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → 𝐴 ∈ ℝ ) |
| 6 | 3nn0 | ⊢ 3 ∈ ℕ0 | |
| 7 | reexpcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 3 ∈ ℕ0 ) → ( 𝐴 ↑ 3 ) ∈ ℝ ) | |
| 8 | 5 6 7 | sylancl | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( 𝐴 ↑ 3 ) ∈ ℝ ) |
| 9 | 6nn | ⊢ 6 ∈ ℕ | |
| 10 | nndivre | ⊢ ( ( ( 𝐴 ↑ 3 ) ∈ ℝ ∧ 6 ∈ ℕ ) → ( ( 𝐴 ↑ 3 ) / 6 ) ∈ ℝ ) | |
| 11 | 8 9 10 | sylancl | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 𝐴 ↑ 3 ) / 6 ) ∈ ℝ ) |
| 12 | 5 11 | resubcld | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) ∈ ℝ ) |
| 13 | 12 | recnd | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) ∈ ℂ ) |
| 14 | ax-icn | ⊢ i ∈ ℂ | |
| 15 | 5 | recnd | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → 𝐴 ∈ ℂ ) |
| 16 | mulcl | ⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · 𝐴 ) ∈ ℂ ) | |
| 17 | 14 15 16 | sylancr | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( i · 𝐴 ) ∈ ℂ ) |
| 18 | 4nn0 | ⊢ 4 ∈ ℕ0 | |
| 19 | eqid | ⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) | |
| 20 | 19 | eftlcl | ⊢ ( ( ( i · 𝐴 ) ∈ ℂ ∧ 4 ∈ ℕ0 ) → Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ∈ ℂ ) |
| 21 | 17 18 20 | sylancl | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ∈ ℂ ) |
| 22 | 21 | imcld | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ℑ ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) ∈ ℝ ) |
| 23 | 22 | recnd | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ℑ ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) ∈ ℂ ) |
| 24 | 19 | resin4p | ⊢ ( 𝐴 ∈ ℝ → ( sin ‘ 𝐴 ) = ( ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) + ( ℑ ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) ) ) |
| 25 | 5 24 | syl | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( sin ‘ 𝐴 ) = ( ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) + ( ℑ ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) ) ) |
| 26 | 13 23 25 | mvrladdd | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( sin ‘ 𝐴 ) − ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) ) = ( ℑ ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) ) |
| 27 | 26 | fveq2d | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( abs ‘ ( ( sin ‘ 𝐴 ) − ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) ) ) = ( abs ‘ ( ℑ ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) ) ) |
| 28 | 23 | abscld | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( abs ‘ ( ℑ ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) ) ∈ ℝ ) |
| 29 | 21 | abscld | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) ∈ ℝ ) |
| 30 | absimle | ⊢ ( Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ∈ ℂ → ( abs ‘ ( ℑ ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) ) ≤ ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) ) | |
| 31 | 21 30 | syl | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( abs ‘ ( ℑ ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) ) ≤ ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) ) |
| 32 | reexpcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 4 ∈ ℕ0 ) → ( 𝐴 ↑ 4 ) ∈ ℝ ) | |
| 33 | 5 18 32 | sylancl | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( 𝐴 ↑ 4 ) ∈ ℝ ) |
| 34 | nndivre | ⊢ ( ( ( 𝐴 ↑ 4 ) ∈ ℝ ∧ 6 ∈ ℕ ) → ( ( 𝐴 ↑ 4 ) / 6 ) ∈ ℝ ) | |
| 35 | 33 9 34 | sylancl | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 𝐴 ↑ 4 ) / 6 ) ∈ ℝ ) |
| 36 | 19 | ef01bndlem | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) < ( ( 𝐴 ↑ 4 ) / 6 ) ) |
| 37 | 6 | a1i | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → 3 ∈ ℕ0 ) |
| 38 | 4z | ⊢ 4 ∈ ℤ | |
| 39 | 3re | ⊢ 3 ∈ ℝ | |
| 40 | 4re | ⊢ 4 ∈ ℝ | |
| 41 | 3lt4 | ⊢ 3 < 4 | |
| 42 | 39 40 41 | ltleii | ⊢ 3 ≤ 4 |
| 43 | 3z | ⊢ 3 ∈ ℤ | |
| 44 | 43 | eluz1i | ⊢ ( 4 ∈ ( ℤ≥ ‘ 3 ) ↔ ( 4 ∈ ℤ ∧ 3 ≤ 4 ) ) |
| 45 | 38 42 44 | mpbir2an | ⊢ 4 ∈ ( ℤ≥ ‘ 3 ) |
| 46 | 45 | a1i | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → 4 ∈ ( ℤ≥ ‘ 3 ) ) |
| 47 | 4 | simp2bi | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → 0 < 𝐴 ) |
| 48 | 0re | ⊢ 0 ∈ ℝ | |
| 49 | ltle | ⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 0 < 𝐴 → 0 ≤ 𝐴 ) ) | |
| 50 | 48 5 49 | sylancr | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( 0 < 𝐴 → 0 ≤ 𝐴 ) ) |
| 51 | 47 50 | mpd | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → 0 ≤ 𝐴 ) |
| 52 | 4 | simp3bi | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → 𝐴 ≤ 1 ) |
| 53 | 5 37 46 51 52 | leexp2rd | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( 𝐴 ↑ 4 ) ≤ ( 𝐴 ↑ 3 ) ) |
| 54 | 6re | ⊢ 6 ∈ ℝ | |
| 55 | 54 | a1i | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → 6 ∈ ℝ ) |
| 56 | 6pos | ⊢ 0 < 6 | |
| 57 | 56 | a1i | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → 0 < 6 ) |
| 58 | lediv1 | ⊢ ( ( ( 𝐴 ↑ 4 ) ∈ ℝ ∧ ( 𝐴 ↑ 3 ) ∈ ℝ ∧ ( 6 ∈ ℝ ∧ 0 < 6 ) ) → ( ( 𝐴 ↑ 4 ) ≤ ( 𝐴 ↑ 3 ) ↔ ( ( 𝐴 ↑ 4 ) / 6 ) ≤ ( ( 𝐴 ↑ 3 ) / 6 ) ) ) | |
| 59 | 33 8 55 57 58 | syl112anc | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 𝐴 ↑ 4 ) ≤ ( 𝐴 ↑ 3 ) ↔ ( ( 𝐴 ↑ 4 ) / 6 ) ≤ ( ( 𝐴 ↑ 3 ) / 6 ) ) ) |
| 60 | 53 59 | mpbid | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 𝐴 ↑ 4 ) / 6 ) ≤ ( ( 𝐴 ↑ 3 ) / 6 ) ) |
| 61 | 29 35 11 36 60 | ltletrd | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) < ( ( 𝐴 ↑ 3 ) / 6 ) ) |
| 62 | 28 29 11 31 61 | lelttrd | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( abs ‘ ( ℑ ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) ) < ( ( 𝐴 ↑ 3 ) / 6 ) ) |
| 63 | 27 62 | eqbrtrd | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( abs ‘ ( ( sin ‘ 𝐴 ) − ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) ) ) < ( ( 𝐴 ↑ 3 ) / 6 ) ) |
| 64 | 5 | resincld | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( sin ‘ 𝐴 ) ∈ ℝ ) |
| 65 | 64 12 11 | absdifltd | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( abs ‘ ( ( sin ‘ 𝐴 ) − ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) ) ) < ( ( 𝐴 ↑ 3 ) / 6 ) ↔ ( ( ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) − ( ( 𝐴 ↑ 3 ) / 6 ) ) < ( sin ‘ 𝐴 ) ∧ ( sin ‘ 𝐴 ) < ( ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) + ( ( 𝐴 ↑ 3 ) / 6 ) ) ) ) ) |
| 66 | 11 | recnd | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 𝐴 ↑ 3 ) / 6 ) ∈ ℂ ) |
| 67 | 15 66 66 | subsub4d | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) − ( ( 𝐴 ↑ 3 ) / 6 ) ) = ( 𝐴 − ( ( ( 𝐴 ↑ 3 ) / 6 ) + ( ( 𝐴 ↑ 3 ) / 6 ) ) ) ) |
| 68 | 8 | recnd | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( 𝐴 ↑ 3 ) ∈ ℂ ) |
| 69 | 3cn | ⊢ 3 ∈ ℂ | |
| 70 | 3ne0 | ⊢ 3 ≠ 0 | |
| 71 | 69 70 | pm3.2i | ⊢ ( 3 ∈ ℂ ∧ 3 ≠ 0 ) |
| 72 | 2cnne0 | ⊢ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) | |
| 73 | divdiv1 | ⊢ ( ( ( 𝐴 ↑ 3 ) ∈ ℂ ∧ ( 3 ∈ ℂ ∧ 3 ≠ 0 ) ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) → ( ( ( 𝐴 ↑ 3 ) / 3 ) / 2 ) = ( ( 𝐴 ↑ 3 ) / ( 3 · 2 ) ) ) | |
| 74 | 71 72 73 | mp3an23 | ⊢ ( ( 𝐴 ↑ 3 ) ∈ ℂ → ( ( ( 𝐴 ↑ 3 ) / 3 ) / 2 ) = ( ( 𝐴 ↑ 3 ) / ( 3 · 2 ) ) ) |
| 75 | 68 74 | syl | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( ( 𝐴 ↑ 3 ) / 3 ) / 2 ) = ( ( 𝐴 ↑ 3 ) / ( 3 · 2 ) ) ) |
| 76 | 3t2e6 | ⊢ ( 3 · 2 ) = 6 | |
| 77 | 76 | oveq2i | ⊢ ( ( 𝐴 ↑ 3 ) / ( 3 · 2 ) ) = ( ( 𝐴 ↑ 3 ) / 6 ) |
| 78 | 75 77 | eqtr2di | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 𝐴 ↑ 3 ) / 6 ) = ( ( ( 𝐴 ↑ 3 ) / 3 ) / 2 ) ) |
| 79 | 78 78 | oveq12d | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( ( 𝐴 ↑ 3 ) / 6 ) + ( ( 𝐴 ↑ 3 ) / 6 ) ) = ( ( ( ( 𝐴 ↑ 3 ) / 3 ) / 2 ) + ( ( ( 𝐴 ↑ 3 ) / 3 ) / 2 ) ) ) |
| 80 | 3nn | ⊢ 3 ∈ ℕ | |
| 81 | nndivre | ⊢ ( ( ( 𝐴 ↑ 3 ) ∈ ℝ ∧ 3 ∈ ℕ ) → ( ( 𝐴 ↑ 3 ) / 3 ) ∈ ℝ ) | |
| 82 | 8 80 81 | sylancl | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 𝐴 ↑ 3 ) / 3 ) ∈ ℝ ) |
| 83 | 82 | recnd | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 𝐴 ↑ 3 ) / 3 ) ∈ ℂ ) |
| 84 | 83 | 2halvesd | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( ( ( 𝐴 ↑ 3 ) / 3 ) / 2 ) + ( ( ( 𝐴 ↑ 3 ) / 3 ) / 2 ) ) = ( ( 𝐴 ↑ 3 ) / 3 ) ) |
| 85 | 79 84 | eqtrd | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( ( 𝐴 ↑ 3 ) / 6 ) + ( ( 𝐴 ↑ 3 ) / 6 ) ) = ( ( 𝐴 ↑ 3 ) / 3 ) ) |
| 86 | 85 | oveq2d | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( 𝐴 − ( ( ( 𝐴 ↑ 3 ) / 6 ) + ( ( 𝐴 ↑ 3 ) / 6 ) ) ) = ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 3 ) ) ) |
| 87 | 67 86 | eqtrd | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) − ( ( 𝐴 ↑ 3 ) / 6 ) ) = ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 3 ) ) ) |
| 88 | 87 | breq1d | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) − ( ( 𝐴 ↑ 3 ) / 6 ) ) < ( sin ‘ 𝐴 ) ↔ ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 3 ) ) < ( sin ‘ 𝐴 ) ) ) |
| 89 | 15 66 | npcand | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) + ( ( 𝐴 ↑ 3 ) / 6 ) ) = 𝐴 ) |
| 90 | 89 | breq2d | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( sin ‘ 𝐴 ) < ( ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) + ( ( 𝐴 ↑ 3 ) / 6 ) ) ↔ ( sin ‘ 𝐴 ) < 𝐴 ) ) |
| 91 | 88 90 | anbi12d | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( ( ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) − ( ( 𝐴 ↑ 3 ) / 6 ) ) < ( sin ‘ 𝐴 ) ∧ ( sin ‘ 𝐴 ) < ( ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) + ( ( 𝐴 ↑ 3 ) / 6 ) ) ) ↔ ( ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 3 ) ) < ( sin ‘ 𝐴 ) ∧ ( sin ‘ 𝐴 ) < 𝐴 ) ) ) |
| 92 | 65 91 | bitrd | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( abs ‘ ( ( sin ‘ 𝐴 ) − ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) ) ) < ( ( 𝐴 ↑ 3 ) / 6 ) ↔ ( ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 3 ) ) < ( sin ‘ 𝐴 ) ∧ ( sin ‘ 𝐴 ) < 𝐴 ) ) ) |
| 93 | 63 92 | mpbid | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 3 ) ) < ( sin ‘ 𝐴 ) ∧ ( sin ‘ 𝐴 ) < 𝐴 ) ) |