This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: 'Less than' relationship between division and multiplication. (Contributed by NM, 24-Feb-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltdivmul2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( ( 𝐴 / 𝐶 ) < 𝐵 ↔ 𝐴 < ( 𝐵 · 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltdivmul | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( ( 𝐴 / 𝐶 ) < 𝐵 ↔ 𝐴 < ( 𝐶 · 𝐵 ) ) ) | |
| 2 | recn | ⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) | |
| 3 | recn | ⊢ ( 𝐶 ∈ ℝ → 𝐶 ∈ ℂ ) | |
| 4 | mulcom | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 · 𝐶 ) = ( 𝐶 · 𝐵 ) ) | |
| 5 | 2 3 4 | syl2an | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐵 · 𝐶 ) = ( 𝐶 · 𝐵 ) ) |
| 6 | 5 | adantrr | ⊢ ( ( 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( 𝐵 · 𝐶 ) = ( 𝐶 · 𝐵 ) ) |
| 7 | 6 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( 𝐵 · 𝐶 ) = ( 𝐶 · 𝐵 ) ) |
| 8 | 7 | breq2d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( 𝐴 < ( 𝐵 · 𝐶 ) ↔ 𝐴 < ( 𝐶 · 𝐵 ) ) ) |
| 9 | 1 8 | bitr4d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( ( 𝐴 / 𝐶 ) < 𝐵 ↔ 𝐴 < ( 𝐵 · 𝐶 ) ) ) |