This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The signs of the sine and cosine functions in the first quadrant. (Contributed by Paul Chapman, 24-Jan-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sincosq1sgn | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( 0 < ( sin ‘ 𝐴 ) ∧ 0 < ( cos ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0xr | ⊢ 0 ∈ ℝ* | |
| 2 | halfpire | ⊢ ( π / 2 ) ∈ ℝ | |
| 3 | 2 | rexri | ⊢ ( π / 2 ) ∈ ℝ* |
| 4 | elioo2 | ⊢ ( ( 0 ∈ ℝ* ∧ ( π / 2 ) ∈ ℝ* ) → ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) ↔ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 < ( π / 2 ) ) ) ) | |
| 5 | 1 3 4 | mp2an | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) ↔ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 < ( π / 2 ) ) ) |
| 6 | sincosq1lem | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 < ( π / 2 ) ) → 0 < ( sin ‘ 𝐴 ) ) | |
| 7 | resubcl | ⊢ ( ( ( π / 2 ) ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( π / 2 ) − 𝐴 ) ∈ ℝ ) | |
| 8 | 2 7 | mpan | ⊢ ( 𝐴 ∈ ℝ → ( ( π / 2 ) − 𝐴 ) ∈ ℝ ) |
| 9 | sincosq1lem | ⊢ ( ( ( ( π / 2 ) − 𝐴 ) ∈ ℝ ∧ 0 < ( ( π / 2 ) − 𝐴 ) ∧ ( ( π / 2 ) − 𝐴 ) < ( π / 2 ) ) → 0 < ( sin ‘ ( ( π / 2 ) − 𝐴 ) ) ) | |
| 10 | 8 9 | syl3an1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < ( ( π / 2 ) − 𝐴 ) ∧ ( ( π / 2 ) − 𝐴 ) < ( π / 2 ) ) → 0 < ( sin ‘ ( ( π / 2 ) − 𝐴 ) ) ) |
| 11 | 10 | 3expib | ⊢ ( 𝐴 ∈ ℝ → ( ( 0 < ( ( π / 2 ) − 𝐴 ) ∧ ( ( π / 2 ) − 𝐴 ) < ( π / 2 ) ) → 0 < ( sin ‘ ( ( π / 2 ) − 𝐴 ) ) ) ) |
| 12 | 0re | ⊢ 0 ∈ ℝ | |
| 13 | ltsub13 | ⊢ ( ( 0 ∈ ℝ ∧ ( π / 2 ) ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 0 < ( ( π / 2 ) − 𝐴 ) ↔ 𝐴 < ( ( π / 2 ) − 0 ) ) ) | |
| 14 | 12 2 13 | mp3an12 | ⊢ ( 𝐴 ∈ ℝ → ( 0 < ( ( π / 2 ) − 𝐴 ) ↔ 𝐴 < ( ( π / 2 ) − 0 ) ) ) |
| 15 | 2 | recni | ⊢ ( π / 2 ) ∈ ℂ |
| 16 | 15 | subid1i | ⊢ ( ( π / 2 ) − 0 ) = ( π / 2 ) |
| 17 | 16 | breq2i | ⊢ ( 𝐴 < ( ( π / 2 ) − 0 ) ↔ 𝐴 < ( π / 2 ) ) |
| 18 | 14 17 | bitrdi | ⊢ ( 𝐴 ∈ ℝ → ( 0 < ( ( π / 2 ) − 𝐴 ) ↔ 𝐴 < ( π / 2 ) ) ) |
| 19 | ltsub23 | ⊢ ( ( ( π / 2 ) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ( π / 2 ) ∈ ℝ ) → ( ( ( π / 2 ) − 𝐴 ) < ( π / 2 ) ↔ ( ( π / 2 ) − ( π / 2 ) ) < 𝐴 ) ) | |
| 20 | 2 2 19 | mp3an13 | ⊢ ( 𝐴 ∈ ℝ → ( ( ( π / 2 ) − 𝐴 ) < ( π / 2 ) ↔ ( ( π / 2 ) − ( π / 2 ) ) < 𝐴 ) ) |
| 21 | 15 | subidi | ⊢ ( ( π / 2 ) − ( π / 2 ) ) = 0 |
| 22 | 21 | breq1i | ⊢ ( ( ( π / 2 ) − ( π / 2 ) ) < 𝐴 ↔ 0 < 𝐴 ) |
| 23 | 20 22 | bitrdi | ⊢ ( 𝐴 ∈ ℝ → ( ( ( π / 2 ) − 𝐴 ) < ( π / 2 ) ↔ 0 < 𝐴 ) ) |
| 24 | 18 23 | anbi12d | ⊢ ( 𝐴 ∈ ℝ → ( ( 0 < ( ( π / 2 ) − 𝐴 ) ∧ ( ( π / 2 ) − 𝐴 ) < ( π / 2 ) ) ↔ ( 𝐴 < ( π / 2 ) ∧ 0 < 𝐴 ) ) ) |
| 25 | 24 | biancomd | ⊢ ( 𝐴 ∈ ℝ → ( ( 0 < ( ( π / 2 ) − 𝐴 ) ∧ ( ( π / 2 ) − 𝐴 ) < ( π / 2 ) ) ↔ ( 0 < 𝐴 ∧ 𝐴 < ( π / 2 ) ) ) ) |
| 26 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 27 | sinhalfpim | ⊢ ( 𝐴 ∈ ℂ → ( sin ‘ ( ( π / 2 ) − 𝐴 ) ) = ( cos ‘ 𝐴 ) ) | |
| 28 | 26 27 | syl | ⊢ ( 𝐴 ∈ ℝ → ( sin ‘ ( ( π / 2 ) − 𝐴 ) ) = ( cos ‘ 𝐴 ) ) |
| 29 | 28 | breq2d | ⊢ ( 𝐴 ∈ ℝ → ( 0 < ( sin ‘ ( ( π / 2 ) − 𝐴 ) ) ↔ 0 < ( cos ‘ 𝐴 ) ) ) |
| 30 | 11 25 29 | 3imtr3d | ⊢ ( 𝐴 ∈ ℝ → ( ( 0 < 𝐴 ∧ 𝐴 < ( π / 2 ) ) → 0 < ( cos ‘ 𝐴 ) ) ) |
| 31 | 30 | 3impib | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 < ( π / 2 ) ) → 0 < ( cos ‘ 𝐴 ) ) |
| 32 | 6 31 | jca | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 < ( π / 2 ) ) → ( 0 < ( sin ‘ 𝐴 ) ∧ 0 < ( cos ‘ 𝐴 ) ) ) |
| 33 | 5 32 | sylbi | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( 0 < ( sin ‘ 𝐴 ) ∧ 0 < ( cos ‘ 𝐴 ) ) ) |