This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Bounds on the cosine of a positive real number less than or equal to 1. (Contributed by Paul Chapman, 19-Jan-2008) (Revised by Mario Carneiro, 30-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cos01bnd | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 1 − ( 2 · ( ( 𝐴 ↑ 2 ) / 3 ) ) ) < ( cos ‘ 𝐴 ) ∧ ( cos ‘ 𝐴 ) < ( 1 − ( ( 𝐴 ↑ 2 ) / 3 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re | ⊢ 1 ∈ ℝ | |
| 2 | 0xr | ⊢ 0 ∈ ℝ* | |
| 3 | elioc2 | ⊢ ( ( 0 ∈ ℝ* ∧ 1 ∈ ℝ ) → ( 𝐴 ∈ ( 0 (,] 1 ) ↔ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 ≤ 1 ) ) ) | |
| 4 | 2 1 3 | mp2an | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) ↔ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 ≤ 1 ) ) |
| 5 | 4 | simp1bi | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → 𝐴 ∈ ℝ ) |
| 6 | 5 | resqcld | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( 𝐴 ↑ 2 ) ∈ ℝ ) |
| 7 | 6 | rehalfcld | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 𝐴 ↑ 2 ) / 2 ) ∈ ℝ ) |
| 8 | resubcl | ⊢ ( ( 1 ∈ ℝ ∧ ( ( 𝐴 ↑ 2 ) / 2 ) ∈ ℝ ) → ( 1 − ( ( 𝐴 ↑ 2 ) / 2 ) ) ∈ ℝ ) | |
| 9 | 1 7 8 | sylancr | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( 1 − ( ( 𝐴 ↑ 2 ) / 2 ) ) ∈ ℝ ) |
| 10 | 9 | recnd | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( 1 − ( ( 𝐴 ↑ 2 ) / 2 ) ) ∈ ℂ ) |
| 11 | ax-icn | ⊢ i ∈ ℂ | |
| 12 | 5 | recnd | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → 𝐴 ∈ ℂ ) |
| 13 | mulcl | ⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · 𝐴 ) ∈ ℂ ) | |
| 14 | 11 12 13 | sylancr | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( i · 𝐴 ) ∈ ℂ ) |
| 15 | 4nn0 | ⊢ 4 ∈ ℕ0 | |
| 16 | eqid | ⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) | |
| 17 | 16 | eftlcl | ⊢ ( ( ( i · 𝐴 ) ∈ ℂ ∧ 4 ∈ ℕ0 ) → Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ∈ ℂ ) |
| 18 | 14 15 17 | sylancl | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ∈ ℂ ) |
| 19 | 18 | recld | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ℜ ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) ∈ ℝ ) |
| 20 | 19 | recnd | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ℜ ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) ∈ ℂ ) |
| 21 | 16 | recos4p | ⊢ ( 𝐴 ∈ ℝ → ( cos ‘ 𝐴 ) = ( ( 1 − ( ( 𝐴 ↑ 2 ) / 2 ) ) + ( ℜ ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) ) ) |
| 22 | 5 21 | syl | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( cos ‘ 𝐴 ) = ( ( 1 − ( ( 𝐴 ↑ 2 ) / 2 ) ) + ( ℜ ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) ) ) |
| 23 | 10 20 22 | mvrladdd | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( cos ‘ 𝐴 ) − ( 1 − ( ( 𝐴 ↑ 2 ) / 2 ) ) ) = ( ℜ ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) ) |
| 24 | 23 | fveq2d | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( abs ‘ ( ( cos ‘ 𝐴 ) − ( 1 − ( ( 𝐴 ↑ 2 ) / 2 ) ) ) ) = ( abs ‘ ( ℜ ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) ) ) |
| 25 | 20 | abscld | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( abs ‘ ( ℜ ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) ) ∈ ℝ ) |
| 26 | 18 | abscld | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) ∈ ℝ ) |
| 27 | 6nn | ⊢ 6 ∈ ℕ | |
| 28 | nndivre | ⊢ ( ( ( 𝐴 ↑ 2 ) ∈ ℝ ∧ 6 ∈ ℕ ) → ( ( 𝐴 ↑ 2 ) / 6 ) ∈ ℝ ) | |
| 29 | 6 27 28 | sylancl | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 𝐴 ↑ 2 ) / 6 ) ∈ ℝ ) |
| 30 | absrele | ⊢ ( Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ∈ ℂ → ( abs ‘ ( ℜ ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) ) ≤ ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) ) | |
| 31 | 18 30 | syl | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( abs ‘ ( ℜ ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) ) ≤ ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) ) |
| 32 | reexpcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 4 ∈ ℕ0 ) → ( 𝐴 ↑ 4 ) ∈ ℝ ) | |
| 33 | 5 15 32 | sylancl | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( 𝐴 ↑ 4 ) ∈ ℝ ) |
| 34 | nndivre | ⊢ ( ( ( 𝐴 ↑ 4 ) ∈ ℝ ∧ 6 ∈ ℕ ) → ( ( 𝐴 ↑ 4 ) / 6 ) ∈ ℝ ) | |
| 35 | 33 27 34 | sylancl | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 𝐴 ↑ 4 ) / 6 ) ∈ ℝ ) |
| 36 | 16 | ef01bndlem | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) < ( ( 𝐴 ↑ 4 ) / 6 ) ) |
| 37 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 38 | 37 | a1i | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → 2 ∈ ℕ0 ) |
| 39 | 4z | ⊢ 4 ∈ ℤ | |
| 40 | 2re | ⊢ 2 ∈ ℝ | |
| 41 | 4re | ⊢ 4 ∈ ℝ | |
| 42 | 2lt4 | ⊢ 2 < 4 | |
| 43 | 40 41 42 | ltleii | ⊢ 2 ≤ 4 |
| 44 | 2z | ⊢ 2 ∈ ℤ | |
| 45 | 44 | eluz1i | ⊢ ( 4 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 4 ∈ ℤ ∧ 2 ≤ 4 ) ) |
| 46 | 39 43 45 | mpbir2an | ⊢ 4 ∈ ( ℤ≥ ‘ 2 ) |
| 47 | 46 | a1i | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → 4 ∈ ( ℤ≥ ‘ 2 ) ) |
| 48 | 4 | simp2bi | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → 0 < 𝐴 ) |
| 49 | 0re | ⊢ 0 ∈ ℝ | |
| 50 | ltle | ⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 0 < 𝐴 → 0 ≤ 𝐴 ) ) | |
| 51 | 49 5 50 | sylancr | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( 0 < 𝐴 → 0 ≤ 𝐴 ) ) |
| 52 | 48 51 | mpd | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → 0 ≤ 𝐴 ) |
| 53 | 4 | simp3bi | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → 𝐴 ≤ 1 ) |
| 54 | 5 38 47 52 53 | leexp2rd | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( 𝐴 ↑ 4 ) ≤ ( 𝐴 ↑ 2 ) ) |
| 55 | 6re | ⊢ 6 ∈ ℝ | |
| 56 | 55 | a1i | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → 6 ∈ ℝ ) |
| 57 | 6pos | ⊢ 0 < 6 | |
| 58 | 57 | a1i | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → 0 < 6 ) |
| 59 | lediv1 | ⊢ ( ( ( 𝐴 ↑ 4 ) ∈ ℝ ∧ ( 𝐴 ↑ 2 ) ∈ ℝ ∧ ( 6 ∈ ℝ ∧ 0 < 6 ) ) → ( ( 𝐴 ↑ 4 ) ≤ ( 𝐴 ↑ 2 ) ↔ ( ( 𝐴 ↑ 4 ) / 6 ) ≤ ( ( 𝐴 ↑ 2 ) / 6 ) ) ) | |
| 60 | 33 6 56 58 59 | syl112anc | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 𝐴 ↑ 4 ) ≤ ( 𝐴 ↑ 2 ) ↔ ( ( 𝐴 ↑ 4 ) / 6 ) ≤ ( ( 𝐴 ↑ 2 ) / 6 ) ) ) |
| 61 | 54 60 | mpbid | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 𝐴 ↑ 4 ) / 6 ) ≤ ( ( 𝐴 ↑ 2 ) / 6 ) ) |
| 62 | 26 35 29 36 61 | ltletrd | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) < ( ( 𝐴 ↑ 2 ) / 6 ) ) |
| 63 | 25 26 29 31 62 | lelttrd | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( abs ‘ ( ℜ ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) ) < ( ( 𝐴 ↑ 2 ) / 6 ) ) |
| 64 | 24 63 | eqbrtrd | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( abs ‘ ( ( cos ‘ 𝐴 ) − ( 1 − ( ( 𝐴 ↑ 2 ) / 2 ) ) ) ) < ( ( 𝐴 ↑ 2 ) / 6 ) ) |
| 65 | 5 | recoscld | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( cos ‘ 𝐴 ) ∈ ℝ ) |
| 66 | 65 9 29 | absdifltd | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( abs ‘ ( ( cos ‘ 𝐴 ) − ( 1 − ( ( 𝐴 ↑ 2 ) / 2 ) ) ) ) < ( ( 𝐴 ↑ 2 ) / 6 ) ↔ ( ( ( 1 − ( ( 𝐴 ↑ 2 ) / 2 ) ) − ( ( 𝐴 ↑ 2 ) / 6 ) ) < ( cos ‘ 𝐴 ) ∧ ( cos ‘ 𝐴 ) < ( ( 1 − ( ( 𝐴 ↑ 2 ) / 2 ) ) + ( ( 𝐴 ↑ 2 ) / 6 ) ) ) ) ) |
| 67 | 1cnd | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → 1 ∈ ℂ ) | |
| 68 | 7 | recnd | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 𝐴 ↑ 2 ) / 2 ) ∈ ℂ ) |
| 69 | 29 | recnd | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 𝐴 ↑ 2 ) / 6 ) ∈ ℂ ) |
| 70 | 67 68 69 | subsub4d | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 1 − ( ( 𝐴 ↑ 2 ) / 2 ) ) − ( ( 𝐴 ↑ 2 ) / 6 ) ) = ( 1 − ( ( ( 𝐴 ↑ 2 ) / 2 ) + ( ( 𝐴 ↑ 2 ) / 6 ) ) ) ) |
| 71 | halfpm6th | ⊢ ( ( ( 1 / 2 ) − ( 1 / 6 ) ) = ( 1 / 3 ) ∧ ( ( 1 / 2 ) + ( 1 / 6 ) ) = ( 2 / 3 ) ) | |
| 72 | 71 | simpri | ⊢ ( ( 1 / 2 ) + ( 1 / 6 ) ) = ( 2 / 3 ) |
| 73 | 72 | oveq2i | ⊢ ( ( 𝐴 ↑ 2 ) · ( ( 1 / 2 ) + ( 1 / 6 ) ) ) = ( ( 𝐴 ↑ 2 ) · ( 2 / 3 ) ) |
| 74 | 6 | recnd | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( 𝐴 ↑ 2 ) ∈ ℂ ) |
| 75 | 2cn | ⊢ 2 ∈ ℂ | |
| 76 | 2ne0 | ⊢ 2 ≠ 0 | |
| 77 | 75 76 | reccli | ⊢ ( 1 / 2 ) ∈ ℂ |
| 78 | 6cn | ⊢ 6 ∈ ℂ | |
| 79 | 27 | nnne0i | ⊢ 6 ≠ 0 |
| 80 | 78 79 | reccli | ⊢ ( 1 / 6 ) ∈ ℂ |
| 81 | adddi | ⊢ ( ( ( 𝐴 ↑ 2 ) ∈ ℂ ∧ ( 1 / 2 ) ∈ ℂ ∧ ( 1 / 6 ) ∈ ℂ ) → ( ( 𝐴 ↑ 2 ) · ( ( 1 / 2 ) + ( 1 / 6 ) ) ) = ( ( ( 𝐴 ↑ 2 ) · ( 1 / 2 ) ) + ( ( 𝐴 ↑ 2 ) · ( 1 / 6 ) ) ) ) | |
| 82 | 77 80 81 | mp3an23 | ⊢ ( ( 𝐴 ↑ 2 ) ∈ ℂ → ( ( 𝐴 ↑ 2 ) · ( ( 1 / 2 ) + ( 1 / 6 ) ) ) = ( ( ( 𝐴 ↑ 2 ) · ( 1 / 2 ) ) + ( ( 𝐴 ↑ 2 ) · ( 1 / 6 ) ) ) ) |
| 83 | 74 82 | syl | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 𝐴 ↑ 2 ) · ( ( 1 / 2 ) + ( 1 / 6 ) ) ) = ( ( ( 𝐴 ↑ 2 ) · ( 1 / 2 ) ) + ( ( 𝐴 ↑ 2 ) · ( 1 / 6 ) ) ) ) |
| 84 | 73 83 | eqtr3id | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 𝐴 ↑ 2 ) · ( 2 / 3 ) ) = ( ( ( 𝐴 ↑ 2 ) · ( 1 / 2 ) ) + ( ( 𝐴 ↑ 2 ) · ( 1 / 6 ) ) ) ) |
| 85 | 3cn | ⊢ 3 ∈ ℂ | |
| 86 | 3ne0 | ⊢ 3 ≠ 0 | |
| 87 | 85 86 | pm3.2i | ⊢ ( 3 ∈ ℂ ∧ 3 ≠ 0 ) |
| 88 | div12 | ⊢ ( ( 2 ∈ ℂ ∧ ( 𝐴 ↑ 2 ) ∈ ℂ ∧ ( 3 ∈ ℂ ∧ 3 ≠ 0 ) ) → ( 2 · ( ( 𝐴 ↑ 2 ) / 3 ) ) = ( ( 𝐴 ↑ 2 ) · ( 2 / 3 ) ) ) | |
| 89 | 75 87 88 | mp3an13 | ⊢ ( ( 𝐴 ↑ 2 ) ∈ ℂ → ( 2 · ( ( 𝐴 ↑ 2 ) / 3 ) ) = ( ( 𝐴 ↑ 2 ) · ( 2 / 3 ) ) ) |
| 90 | 74 89 | syl | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( 2 · ( ( 𝐴 ↑ 2 ) / 3 ) ) = ( ( 𝐴 ↑ 2 ) · ( 2 / 3 ) ) ) |
| 91 | divrec | ⊢ ( ( ( 𝐴 ↑ 2 ) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0 ) → ( ( 𝐴 ↑ 2 ) / 2 ) = ( ( 𝐴 ↑ 2 ) · ( 1 / 2 ) ) ) | |
| 92 | 75 76 91 | mp3an23 | ⊢ ( ( 𝐴 ↑ 2 ) ∈ ℂ → ( ( 𝐴 ↑ 2 ) / 2 ) = ( ( 𝐴 ↑ 2 ) · ( 1 / 2 ) ) ) |
| 93 | 74 92 | syl | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 𝐴 ↑ 2 ) / 2 ) = ( ( 𝐴 ↑ 2 ) · ( 1 / 2 ) ) ) |
| 94 | divrec | ⊢ ( ( ( 𝐴 ↑ 2 ) ∈ ℂ ∧ 6 ∈ ℂ ∧ 6 ≠ 0 ) → ( ( 𝐴 ↑ 2 ) / 6 ) = ( ( 𝐴 ↑ 2 ) · ( 1 / 6 ) ) ) | |
| 95 | 78 79 94 | mp3an23 | ⊢ ( ( 𝐴 ↑ 2 ) ∈ ℂ → ( ( 𝐴 ↑ 2 ) / 6 ) = ( ( 𝐴 ↑ 2 ) · ( 1 / 6 ) ) ) |
| 96 | 74 95 | syl | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 𝐴 ↑ 2 ) / 6 ) = ( ( 𝐴 ↑ 2 ) · ( 1 / 6 ) ) ) |
| 97 | 93 96 | oveq12d | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( ( 𝐴 ↑ 2 ) / 2 ) + ( ( 𝐴 ↑ 2 ) / 6 ) ) = ( ( ( 𝐴 ↑ 2 ) · ( 1 / 2 ) ) + ( ( 𝐴 ↑ 2 ) · ( 1 / 6 ) ) ) ) |
| 98 | 84 90 97 | 3eqtr4rd | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( ( 𝐴 ↑ 2 ) / 2 ) + ( ( 𝐴 ↑ 2 ) / 6 ) ) = ( 2 · ( ( 𝐴 ↑ 2 ) / 3 ) ) ) |
| 99 | 98 | oveq2d | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( 1 − ( ( ( 𝐴 ↑ 2 ) / 2 ) + ( ( 𝐴 ↑ 2 ) / 6 ) ) ) = ( 1 − ( 2 · ( ( 𝐴 ↑ 2 ) / 3 ) ) ) ) |
| 100 | 70 99 | eqtrd | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 1 − ( ( 𝐴 ↑ 2 ) / 2 ) ) − ( ( 𝐴 ↑ 2 ) / 6 ) ) = ( 1 − ( 2 · ( ( 𝐴 ↑ 2 ) / 3 ) ) ) ) |
| 101 | 100 | breq1d | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( ( 1 − ( ( 𝐴 ↑ 2 ) / 2 ) ) − ( ( 𝐴 ↑ 2 ) / 6 ) ) < ( cos ‘ 𝐴 ) ↔ ( 1 − ( 2 · ( ( 𝐴 ↑ 2 ) / 3 ) ) ) < ( cos ‘ 𝐴 ) ) ) |
| 102 | 67 68 69 | subsubd | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( 1 − ( ( ( 𝐴 ↑ 2 ) / 2 ) − ( ( 𝐴 ↑ 2 ) / 6 ) ) ) = ( ( 1 − ( ( 𝐴 ↑ 2 ) / 2 ) ) + ( ( 𝐴 ↑ 2 ) / 6 ) ) ) |
| 103 | 71 | simpli | ⊢ ( ( 1 / 2 ) − ( 1 / 6 ) ) = ( 1 / 3 ) |
| 104 | 103 | oveq2i | ⊢ ( ( 𝐴 ↑ 2 ) · ( ( 1 / 2 ) − ( 1 / 6 ) ) ) = ( ( 𝐴 ↑ 2 ) · ( 1 / 3 ) ) |
| 105 | subdi | ⊢ ( ( ( 𝐴 ↑ 2 ) ∈ ℂ ∧ ( 1 / 2 ) ∈ ℂ ∧ ( 1 / 6 ) ∈ ℂ ) → ( ( 𝐴 ↑ 2 ) · ( ( 1 / 2 ) − ( 1 / 6 ) ) ) = ( ( ( 𝐴 ↑ 2 ) · ( 1 / 2 ) ) − ( ( 𝐴 ↑ 2 ) · ( 1 / 6 ) ) ) ) | |
| 106 | 77 80 105 | mp3an23 | ⊢ ( ( 𝐴 ↑ 2 ) ∈ ℂ → ( ( 𝐴 ↑ 2 ) · ( ( 1 / 2 ) − ( 1 / 6 ) ) ) = ( ( ( 𝐴 ↑ 2 ) · ( 1 / 2 ) ) − ( ( 𝐴 ↑ 2 ) · ( 1 / 6 ) ) ) ) |
| 107 | 74 106 | syl | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 𝐴 ↑ 2 ) · ( ( 1 / 2 ) − ( 1 / 6 ) ) ) = ( ( ( 𝐴 ↑ 2 ) · ( 1 / 2 ) ) − ( ( 𝐴 ↑ 2 ) · ( 1 / 6 ) ) ) ) |
| 108 | 104 107 | eqtr3id | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 𝐴 ↑ 2 ) · ( 1 / 3 ) ) = ( ( ( 𝐴 ↑ 2 ) · ( 1 / 2 ) ) − ( ( 𝐴 ↑ 2 ) · ( 1 / 6 ) ) ) ) |
| 109 | divrec | ⊢ ( ( ( 𝐴 ↑ 2 ) ∈ ℂ ∧ 3 ∈ ℂ ∧ 3 ≠ 0 ) → ( ( 𝐴 ↑ 2 ) / 3 ) = ( ( 𝐴 ↑ 2 ) · ( 1 / 3 ) ) ) | |
| 110 | 85 86 109 | mp3an23 | ⊢ ( ( 𝐴 ↑ 2 ) ∈ ℂ → ( ( 𝐴 ↑ 2 ) / 3 ) = ( ( 𝐴 ↑ 2 ) · ( 1 / 3 ) ) ) |
| 111 | 74 110 | syl | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 𝐴 ↑ 2 ) / 3 ) = ( ( 𝐴 ↑ 2 ) · ( 1 / 3 ) ) ) |
| 112 | 93 96 | oveq12d | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( ( 𝐴 ↑ 2 ) / 2 ) − ( ( 𝐴 ↑ 2 ) / 6 ) ) = ( ( ( 𝐴 ↑ 2 ) · ( 1 / 2 ) ) − ( ( 𝐴 ↑ 2 ) · ( 1 / 6 ) ) ) ) |
| 113 | 108 111 112 | 3eqtr4rd | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( ( 𝐴 ↑ 2 ) / 2 ) − ( ( 𝐴 ↑ 2 ) / 6 ) ) = ( ( 𝐴 ↑ 2 ) / 3 ) ) |
| 114 | 113 | oveq2d | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( 1 − ( ( ( 𝐴 ↑ 2 ) / 2 ) − ( ( 𝐴 ↑ 2 ) / 6 ) ) ) = ( 1 − ( ( 𝐴 ↑ 2 ) / 3 ) ) ) |
| 115 | 102 114 | eqtr3d | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 1 − ( ( 𝐴 ↑ 2 ) / 2 ) ) + ( ( 𝐴 ↑ 2 ) / 6 ) ) = ( 1 − ( ( 𝐴 ↑ 2 ) / 3 ) ) ) |
| 116 | 115 | breq2d | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( cos ‘ 𝐴 ) < ( ( 1 − ( ( 𝐴 ↑ 2 ) / 2 ) ) + ( ( 𝐴 ↑ 2 ) / 6 ) ) ↔ ( cos ‘ 𝐴 ) < ( 1 − ( ( 𝐴 ↑ 2 ) / 3 ) ) ) ) |
| 117 | 101 116 | anbi12d | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( ( ( 1 − ( ( 𝐴 ↑ 2 ) / 2 ) ) − ( ( 𝐴 ↑ 2 ) / 6 ) ) < ( cos ‘ 𝐴 ) ∧ ( cos ‘ 𝐴 ) < ( ( 1 − ( ( 𝐴 ↑ 2 ) / 2 ) ) + ( ( 𝐴 ↑ 2 ) / 6 ) ) ) ↔ ( ( 1 − ( 2 · ( ( 𝐴 ↑ 2 ) / 3 ) ) ) < ( cos ‘ 𝐴 ) ∧ ( cos ‘ 𝐴 ) < ( 1 − ( ( 𝐴 ↑ 2 ) / 3 ) ) ) ) ) |
| 118 | 66 117 | bitrd | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( abs ‘ ( ( cos ‘ 𝐴 ) − ( 1 − ( ( 𝐴 ↑ 2 ) / 2 ) ) ) ) < ( ( 𝐴 ↑ 2 ) / 6 ) ↔ ( ( 1 − ( 2 · ( ( 𝐴 ↑ 2 ) / 3 ) ) ) < ( cos ‘ 𝐴 ) ∧ ( cos ‘ 𝐴 ) < ( 1 − ( ( 𝐴 ↑ 2 ) / 3 ) ) ) ) ) |
| 119 | 64 118 | mpbid | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 1 − ( 2 · ( ( 𝐴 ↑ 2 ) / 3 ) ) ) < ( cos ‘ 𝐴 ) ∧ ( cos ‘ 𝐴 ) < ( 1 − ( ( 𝐴 ↑ 2 ) / 3 ) ) ) ) |