This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem recoscld

Description: Closure of the cosine function. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypothesis resincld.1 ( 𝜑𝐴 ∈ ℝ )
Assertion recoscld ( 𝜑 → ( cos ‘ 𝐴 ) ∈ ℝ )

Proof

Step Hyp Ref Expression
1 resincld.1 ( 𝜑𝐴 ∈ ℝ )
2 recoscl ( 𝐴 ∈ ℝ → ( cos ‘ 𝐴 ) ∈ ℝ )
3 1 2 syl ( 𝜑 → ( cos ‘ 𝐴 ) ∈ ℝ )