This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Expand the square of a subtraction. (Contributed by Scott Fenton, 10-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | binom2sub | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 − 𝐵 ) ↑ 2 ) = ( ( ( 𝐴 ↑ 2 ) − ( 2 · ( 𝐴 · 𝐵 ) ) ) + ( 𝐵 ↑ 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negcl | ⊢ ( 𝐵 ∈ ℂ → - 𝐵 ∈ ℂ ) | |
| 2 | binom2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ - 𝐵 ∈ ℂ ) → ( ( 𝐴 + - 𝐵 ) ↑ 2 ) = ( ( ( 𝐴 ↑ 2 ) + ( 2 · ( 𝐴 · - 𝐵 ) ) ) + ( - 𝐵 ↑ 2 ) ) ) | |
| 3 | 1 2 | sylan2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + - 𝐵 ) ↑ 2 ) = ( ( ( 𝐴 ↑ 2 ) + ( 2 · ( 𝐴 · - 𝐵 ) ) ) + ( - 𝐵 ↑ 2 ) ) ) |
| 4 | negsub | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + - 𝐵 ) = ( 𝐴 − 𝐵 ) ) | |
| 5 | 4 | oveq1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + - 𝐵 ) ↑ 2 ) = ( ( 𝐴 − 𝐵 ) ↑ 2 ) ) |
| 6 | 3 5 | eqtr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( 𝐴 ↑ 2 ) + ( 2 · ( 𝐴 · - 𝐵 ) ) ) + ( - 𝐵 ↑ 2 ) ) = ( ( 𝐴 − 𝐵 ) ↑ 2 ) ) |
| 7 | mulneg2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · - 𝐵 ) = - ( 𝐴 · 𝐵 ) ) | |
| 8 | 7 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 2 · ( 𝐴 · - 𝐵 ) ) = ( 2 · - ( 𝐴 · 𝐵 ) ) ) |
| 9 | 2cn | ⊢ 2 ∈ ℂ | |
| 10 | mulcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · 𝐵 ) ∈ ℂ ) | |
| 11 | mulneg2 | ⊢ ( ( 2 ∈ ℂ ∧ ( 𝐴 · 𝐵 ) ∈ ℂ ) → ( 2 · - ( 𝐴 · 𝐵 ) ) = - ( 2 · ( 𝐴 · 𝐵 ) ) ) | |
| 12 | 9 10 11 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 2 · - ( 𝐴 · 𝐵 ) ) = - ( 2 · ( 𝐴 · 𝐵 ) ) ) |
| 13 | 8 12 | eqtr2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → - ( 2 · ( 𝐴 · 𝐵 ) ) = ( 2 · ( 𝐴 · - 𝐵 ) ) ) |
| 14 | 13 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 ↑ 2 ) + - ( 2 · ( 𝐴 · 𝐵 ) ) ) = ( ( 𝐴 ↑ 2 ) + ( 2 · ( 𝐴 · - 𝐵 ) ) ) ) |
| 15 | sqcl | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 2 ) ∈ ℂ ) | |
| 16 | 15 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑ 2 ) ∈ ℂ ) |
| 17 | mulcl | ⊢ ( ( 2 ∈ ℂ ∧ ( 𝐴 · 𝐵 ) ∈ ℂ ) → ( 2 · ( 𝐴 · 𝐵 ) ) ∈ ℂ ) | |
| 18 | 9 10 17 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 2 · ( 𝐴 · 𝐵 ) ) ∈ ℂ ) |
| 19 | 16 18 | negsubd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 ↑ 2 ) + - ( 2 · ( 𝐴 · 𝐵 ) ) ) = ( ( 𝐴 ↑ 2 ) − ( 2 · ( 𝐴 · 𝐵 ) ) ) ) |
| 20 | 14 19 | eqtr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 ↑ 2 ) + ( 2 · ( 𝐴 · - 𝐵 ) ) ) = ( ( 𝐴 ↑ 2 ) − ( 2 · ( 𝐴 · 𝐵 ) ) ) ) |
| 21 | sqneg | ⊢ ( 𝐵 ∈ ℂ → ( - 𝐵 ↑ 2 ) = ( 𝐵 ↑ 2 ) ) | |
| 22 | 21 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( - 𝐵 ↑ 2 ) = ( 𝐵 ↑ 2 ) ) |
| 23 | 20 22 | oveq12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( 𝐴 ↑ 2 ) + ( 2 · ( 𝐴 · - 𝐵 ) ) ) + ( - 𝐵 ↑ 2 ) ) = ( ( ( 𝐴 ↑ 2 ) − ( 2 · ( 𝐴 · 𝐵 ) ) ) + ( 𝐵 ↑ 2 ) ) ) |
| 24 | 6 23 | eqtr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 − 𝐵 ) ↑ 2 ) = ( ( ( 𝐴 ↑ 2 ) − ( 2 · ( 𝐴 · 𝐵 ) ) ) + ( 𝐵 ↑ 2 ) ) ) |