This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cosine of a positive real number less than or equal to 1 is positive. (Contributed by Paul Chapman, 19-Jan-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cos01gt0 | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → 0 < ( cos ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0xr | ⊢ 0 ∈ ℝ* | |
| 2 | 1re | ⊢ 1 ∈ ℝ | |
| 3 | elioc2 | ⊢ ( ( 0 ∈ ℝ* ∧ 1 ∈ ℝ ) → ( 𝐴 ∈ ( 0 (,] 1 ) ↔ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 ≤ 1 ) ) ) | |
| 4 | 1 2 3 | mp2an | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) ↔ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 ≤ 1 ) ) |
| 5 | 4 | simp1bi | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → 𝐴 ∈ ℝ ) |
| 6 | 5 | resqcld | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( 𝐴 ↑ 2 ) ∈ ℝ ) |
| 7 | 6 | recnd | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( 𝐴 ↑ 2 ) ∈ ℂ ) |
| 8 | 2cn | ⊢ 2 ∈ ℂ | |
| 9 | 3cn | ⊢ 3 ∈ ℂ | |
| 10 | 3ne0 | ⊢ 3 ≠ 0 | |
| 11 | 9 10 | pm3.2i | ⊢ ( 3 ∈ ℂ ∧ 3 ≠ 0 ) |
| 12 | div12 | ⊢ ( ( 2 ∈ ℂ ∧ ( 𝐴 ↑ 2 ) ∈ ℂ ∧ ( 3 ∈ ℂ ∧ 3 ≠ 0 ) ) → ( 2 · ( ( 𝐴 ↑ 2 ) / 3 ) ) = ( ( 𝐴 ↑ 2 ) · ( 2 / 3 ) ) ) | |
| 13 | 8 11 12 | mp3an13 | ⊢ ( ( 𝐴 ↑ 2 ) ∈ ℂ → ( 2 · ( ( 𝐴 ↑ 2 ) / 3 ) ) = ( ( 𝐴 ↑ 2 ) · ( 2 / 3 ) ) ) |
| 14 | 7 13 | syl | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( 2 · ( ( 𝐴 ↑ 2 ) / 3 ) ) = ( ( 𝐴 ↑ 2 ) · ( 2 / 3 ) ) ) |
| 15 | 2z | ⊢ 2 ∈ ℤ | |
| 16 | expgt0 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 2 ∈ ℤ ∧ 0 < 𝐴 ) → 0 < ( 𝐴 ↑ 2 ) ) | |
| 17 | 15 16 | mp3an2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 0 < ( 𝐴 ↑ 2 ) ) |
| 18 | 17 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 ≤ 1 ) → 0 < ( 𝐴 ↑ 2 ) ) |
| 19 | 4 18 | sylbi | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → 0 < ( 𝐴 ↑ 2 ) ) |
| 20 | 2lt3 | ⊢ 2 < 3 | |
| 21 | 2re | ⊢ 2 ∈ ℝ | |
| 22 | 3re | ⊢ 3 ∈ ℝ | |
| 23 | 3pos | ⊢ 0 < 3 | |
| 24 | 21 22 22 23 | ltdiv1ii | ⊢ ( 2 < 3 ↔ ( 2 / 3 ) < ( 3 / 3 ) ) |
| 25 | 20 24 | mpbi | ⊢ ( 2 / 3 ) < ( 3 / 3 ) |
| 26 | 9 10 | dividi | ⊢ ( 3 / 3 ) = 1 |
| 27 | 25 26 | breqtri | ⊢ ( 2 / 3 ) < 1 |
| 28 | 21 22 10 | redivcli | ⊢ ( 2 / 3 ) ∈ ℝ |
| 29 | ltmul2 | ⊢ ( ( ( 2 / 3 ) ∈ ℝ ∧ 1 ∈ ℝ ∧ ( ( 𝐴 ↑ 2 ) ∈ ℝ ∧ 0 < ( 𝐴 ↑ 2 ) ) ) → ( ( 2 / 3 ) < 1 ↔ ( ( 𝐴 ↑ 2 ) · ( 2 / 3 ) ) < ( ( 𝐴 ↑ 2 ) · 1 ) ) ) | |
| 30 | 28 2 29 | mp3an12 | ⊢ ( ( ( 𝐴 ↑ 2 ) ∈ ℝ ∧ 0 < ( 𝐴 ↑ 2 ) ) → ( ( 2 / 3 ) < 1 ↔ ( ( 𝐴 ↑ 2 ) · ( 2 / 3 ) ) < ( ( 𝐴 ↑ 2 ) · 1 ) ) ) |
| 31 | 27 30 | mpbii | ⊢ ( ( ( 𝐴 ↑ 2 ) ∈ ℝ ∧ 0 < ( 𝐴 ↑ 2 ) ) → ( ( 𝐴 ↑ 2 ) · ( 2 / 3 ) ) < ( ( 𝐴 ↑ 2 ) · 1 ) ) |
| 32 | 6 19 31 | syl2anc | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 𝐴 ↑ 2 ) · ( 2 / 3 ) ) < ( ( 𝐴 ↑ 2 ) · 1 ) ) |
| 33 | 7 | mulridd | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 𝐴 ↑ 2 ) · 1 ) = ( 𝐴 ↑ 2 ) ) |
| 34 | 32 33 | breqtrd | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 𝐴 ↑ 2 ) · ( 2 / 3 ) ) < ( 𝐴 ↑ 2 ) ) |
| 35 | 14 34 | eqbrtrd | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( 2 · ( ( 𝐴 ↑ 2 ) / 3 ) ) < ( 𝐴 ↑ 2 ) ) |
| 36 | 0re | ⊢ 0 ∈ ℝ | |
| 37 | ltle | ⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 0 < 𝐴 → 0 ≤ 𝐴 ) ) | |
| 38 | 36 37 | mpan | ⊢ ( 𝐴 ∈ ℝ → ( 0 < 𝐴 → 0 ≤ 𝐴 ) ) |
| 39 | 38 | imdistani | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) |
| 40 | le2sq2 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 1 ∈ ℝ ∧ 𝐴 ≤ 1 ) ) → ( 𝐴 ↑ 2 ) ≤ ( 1 ↑ 2 ) ) | |
| 41 | 2 40 | mpanr1 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐴 ≤ 1 ) → ( 𝐴 ↑ 2 ) ≤ ( 1 ↑ 2 ) ) |
| 42 | 39 41 | stoic3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 ≤ 1 ) → ( 𝐴 ↑ 2 ) ≤ ( 1 ↑ 2 ) ) |
| 43 | 4 42 | sylbi | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( 𝐴 ↑ 2 ) ≤ ( 1 ↑ 2 ) ) |
| 44 | sq1 | ⊢ ( 1 ↑ 2 ) = 1 | |
| 45 | 43 44 | breqtrdi | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( 𝐴 ↑ 2 ) ≤ 1 ) |
| 46 | redivcl | ⊢ ( ( ( 𝐴 ↑ 2 ) ∈ ℝ ∧ 3 ∈ ℝ ∧ 3 ≠ 0 ) → ( ( 𝐴 ↑ 2 ) / 3 ) ∈ ℝ ) | |
| 47 | 22 10 46 | mp3an23 | ⊢ ( ( 𝐴 ↑ 2 ) ∈ ℝ → ( ( 𝐴 ↑ 2 ) / 3 ) ∈ ℝ ) |
| 48 | 6 47 | syl | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 𝐴 ↑ 2 ) / 3 ) ∈ ℝ ) |
| 49 | remulcl | ⊢ ( ( 2 ∈ ℝ ∧ ( ( 𝐴 ↑ 2 ) / 3 ) ∈ ℝ ) → ( 2 · ( ( 𝐴 ↑ 2 ) / 3 ) ) ∈ ℝ ) | |
| 50 | 21 48 49 | sylancr | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( 2 · ( ( 𝐴 ↑ 2 ) / 3 ) ) ∈ ℝ ) |
| 51 | ltletr | ⊢ ( ( ( 2 · ( ( 𝐴 ↑ 2 ) / 3 ) ) ∈ ℝ ∧ ( 𝐴 ↑ 2 ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( ( 2 · ( ( 𝐴 ↑ 2 ) / 3 ) ) < ( 𝐴 ↑ 2 ) ∧ ( 𝐴 ↑ 2 ) ≤ 1 ) → ( 2 · ( ( 𝐴 ↑ 2 ) / 3 ) ) < 1 ) ) | |
| 52 | 2 51 | mp3an3 | ⊢ ( ( ( 2 · ( ( 𝐴 ↑ 2 ) / 3 ) ) ∈ ℝ ∧ ( 𝐴 ↑ 2 ) ∈ ℝ ) → ( ( ( 2 · ( ( 𝐴 ↑ 2 ) / 3 ) ) < ( 𝐴 ↑ 2 ) ∧ ( 𝐴 ↑ 2 ) ≤ 1 ) → ( 2 · ( ( 𝐴 ↑ 2 ) / 3 ) ) < 1 ) ) |
| 53 | 50 6 52 | syl2anc | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( ( 2 · ( ( 𝐴 ↑ 2 ) / 3 ) ) < ( 𝐴 ↑ 2 ) ∧ ( 𝐴 ↑ 2 ) ≤ 1 ) → ( 2 · ( ( 𝐴 ↑ 2 ) / 3 ) ) < 1 ) ) |
| 54 | 35 45 53 | mp2and | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( 2 · ( ( 𝐴 ↑ 2 ) / 3 ) ) < 1 ) |
| 55 | posdif | ⊢ ( ( ( 2 · ( ( 𝐴 ↑ 2 ) / 3 ) ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( 2 · ( ( 𝐴 ↑ 2 ) / 3 ) ) < 1 ↔ 0 < ( 1 − ( 2 · ( ( 𝐴 ↑ 2 ) / 3 ) ) ) ) ) | |
| 56 | 50 2 55 | sylancl | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 2 · ( ( 𝐴 ↑ 2 ) / 3 ) ) < 1 ↔ 0 < ( 1 − ( 2 · ( ( 𝐴 ↑ 2 ) / 3 ) ) ) ) ) |
| 57 | 54 56 | mpbid | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → 0 < ( 1 − ( 2 · ( ( 𝐴 ↑ 2 ) / 3 ) ) ) ) |
| 58 | cos01bnd | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 1 − ( 2 · ( ( 𝐴 ↑ 2 ) / 3 ) ) ) < ( cos ‘ 𝐴 ) ∧ ( cos ‘ 𝐴 ) < ( 1 − ( ( 𝐴 ↑ 2 ) / 3 ) ) ) ) | |
| 59 | 58 | simpld | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( 1 − ( 2 · ( ( 𝐴 ↑ 2 ) / 3 ) ) ) < ( cos ‘ 𝐴 ) ) |
| 60 | resubcl | ⊢ ( ( 1 ∈ ℝ ∧ ( 2 · ( ( 𝐴 ↑ 2 ) / 3 ) ) ∈ ℝ ) → ( 1 − ( 2 · ( ( 𝐴 ↑ 2 ) / 3 ) ) ) ∈ ℝ ) | |
| 61 | 2 50 60 | sylancr | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( 1 − ( 2 · ( ( 𝐴 ↑ 2 ) / 3 ) ) ) ∈ ℝ ) |
| 62 | 5 | recoscld | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( cos ‘ 𝐴 ) ∈ ℝ ) |
| 63 | lttr | ⊢ ( ( 0 ∈ ℝ ∧ ( 1 − ( 2 · ( ( 𝐴 ↑ 2 ) / 3 ) ) ) ∈ ℝ ∧ ( cos ‘ 𝐴 ) ∈ ℝ ) → ( ( 0 < ( 1 − ( 2 · ( ( 𝐴 ↑ 2 ) / 3 ) ) ) ∧ ( 1 − ( 2 · ( ( 𝐴 ↑ 2 ) / 3 ) ) ) < ( cos ‘ 𝐴 ) ) → 0 < ( cos ‘ 𝐴 ) ) ) | |
| 64 | 36 61 62 63 | mp3an2i | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 0 < ( 1 − ( 2 · ( ( 𝐴 ↑ 2 ) / 3 ) ) ) ∧ ( 1 − ( 2 · ( ( 𝐴 ↑ 2 ) / 3 ) ) ) < ( cos ‘ 𝐴 ) ) → 0 < ( cos ‘ 𝐴 ) ) ) |
| 65 | 57 59 64 | mp2and | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → 0 < ( cos ‘ 𝐴 ) ) |