This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product of two positive numbers is positive. (Contributed by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ltd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| ltd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| mulgt0d.3 | ⊢ ( 𝜑 → 0 < 𝐴 ) | ||
| mulgt0d.4 | ⊢ ( 𝜑 → 0 < 𝐵 ) | ||
| Assertion | mulgt0d | ⊢ ( 𝜑 → 0 < ( 𝐴 · 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | ltd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | mulgt0d.3 | ⊢ ( 𝜑 → 0 < 𝐴 ) | |
| 4 | mulgt0d.4 | ⊢ ( 𝜑 → 0 < 𝐵 ) | |
| 5 | mulgt0 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → 0 < ( 𝐴 · 𝐵 ) ) | |
| 6 | 1 3 2 4 5 | syl22anc | ⊢ ( 𝜑 → 0 < ( 𝐴 · 𝐵 ) ) |