This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The tangent function is greater than or equal to its argument in absolute value. (Contributed by Mario Carneiro, 25-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tanabsge | ⊢ ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) → ( abs ‘ 𝐴 ) ≤ ( abs ‘ ( tan ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elioore | ⊢ ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) → 𝐴 ∈ ℝ ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ∧ 𝐴 < 0 ) → 𝐴 ∈ ℝ ) |
| 3 | 2 | renegcld | ⊢ ( ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ∧ 𝐴 < 0 ) → - 𝐴 ∈ ℝ ) |
| 4 | 1 | lt0neg1d | ⊢ ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) → ( 𝐴 < 0 ↔ 0 < - 𝐴 ) ) |
| 5 | 4 | biimpa | ⊢ ( ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ∧ 𝐴 < 0 ) → 0 < - 𝐴 ) |
| 6 | eliooord | ⊢ ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) → ( - ( π / 2 ) < 𝐴 ∧ 𝐴 < ( π / 2 ) ) ) | |
| 7 | 6 | simpld | ⊢ ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) → - ( π / 2 ) < 𝐴 ) |
| 8 | 7 | adantr | ⊢ ( ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ∧ 𝐴 < 0 ) → - ( π / 2 ) < 𝐴 ) |
| 9 | halfpire | ⊢ ( π / 2 ) ∈ ℝ | |
| 10 | ltnegcon1 | ⊢ ( ( ( π / 2 ) ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( - ( π / 2 ) < 𝐴 ↔ - 𝐴 < ( π / 2 ) ) ) | |
| 11 | 9 2 10 | sylancr | ⊢ ( ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ∧ 𝐴 < 0 ) → ( - ( π / 2 ) < 𝐴 ↔ - 𝐴 < ( π / 2 ) ) ) |
| 12 | 8 11 | mpbid | ⊢ ( ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ∧ 𝐴 < 0 ) → - 𝐴 < ( π / 2 ) ) |
| 13 | 0xr | ⊢ 0 ∈ ℝ* | |
| 14 | 9 | rexri | ⊢ ( π / 2 ) ∈ ℝ* |
| 15 | elioo2 | ⊢ ( ( 0 ∈ ℝ* ∧ ( π / 2 ) ∈ ℝ* ) → ( - 𝐴 ∈ ( 0 (,) ( π / 2 ) ) ↔ ( - 𝐴 ∈ ℝ ∧ 0 < - 𝐴 ∧ - 𝐴 < ( π / 2 ) ) ) ) | |
| 16 | 13 14 15 | mp2an | ⊢ ( - 𝐴 ∈ ( 0 (,) ( π / 2 ) ) ↔ ( - 𝐴 ∈ ℝ ∧ 0 < - 𝐴 ∧ - 𝐴 < ( π / 2 ) ) ) |
| 17 | 3 5 12 16 | syl3anbrc | ⊢ ( ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ∧ 𝐴 < 0 ) → - 𝐴 ∈ ( 0 (,) ( π / 2 ) ) ) |
| 18 | sincosq1sgn | ⊢ ( - 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( 0 < ( sin ‘ - 𝐴 ) ∧ 0 < ( cos ‘ - 𝐴 ) ) ) | |
| 19 | 17 18 | syl | ⊢ ( ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ∧ 𝐴 < 0 ) → ( 0 < ( sin ‘ - 𝐴 ) ∧ 0 < ( cos ‘ - 𝐴 ) ) ) |
| 20 | 19 | simprd | ⊢ ( ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ∧ 𝐴 < 0 ) → 0 < ( cos ‘ - 𝐴 ) ) |
| 21 | 20 | gt0ne0d | ⊢ ( ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ∧ 𝐴 < 0 ) → ( cos ‘ - 𝐴 ) ≠ 0 ) |
| 22 | 3 21 | retancld | ⊢ ( ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ∧ 𝐴 < 0 ) → ( tan ‘ - 𝐴 ) ∈ ℝ ) |
| 23 | tangtx | ⊢ ( - 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → - 𝐴 < ( tan ‘ - 𝐴 ) ) | |
| 24 | 17 23 | syl | ⊢ ( ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ∧ 𝐴 < 0 ) → - 𝐴 < ( tan ‘ - 𝐴 ) ) |
| 25 | 3 22 24 | ltled | ⊢ ( ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ∧ 𝐴 < 0 ) → - 𝐴 ≤ ( tan ‘ - 𝐴 ) ) |
| 26 | 0re | ⊢ 0 ∈ ℝ | |
| 27 | ltle | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ∈ ℝ ) → ( 𝐴 < 0 → 𝐴 ≤ 0 ) ) | |
| 28 | 1 26 27 | sylancl | ⊢ ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) → ( 𝐴 < 0 → 𝐴 ≤ 0 ) ) |
| 29 | 28 | imp | ⊢ ( ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ∧ 𝐴 < 0 ) → 𝐴 ≤ 0 ) |
| 30 | 2 29 | absnidd | ⊢ ( ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ∧ 𝐴 < 0 ) → ( abs ‘ 𝐴 ) = - 𝐴 ) |
| 31 | 1 | recnd | ⊢ ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) → 𝐴 ∈ ℂ ) |
| 32 | 31 | adantr | ⊢ ( ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ∧ 𝐴 < 0 ) → 𝐴 ∈ ℂ ) |
| 33 | 32 | negnegd | ⊢ ( ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ∧ 𝐴 < 0 ) → - - 𝐴 = 𝐴 ) |
| 34 | 33 | fveq2d | ⊢ ( ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ∧ 𝐴 < 0 ) → ( tan ‘ - - 𝐴 ) = ( tan ‘ 𝐴 ) ) |
| 35 | 32 | negcld | ⊢ ( ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ∧ 𝐴 < 0 ) → - 𝐴 ∈ ℂ ) |
| 36 | tanneg | ⊢ ( ( - 𝐴 ∈ ℂ ∧ ( cos ‘ - 𝐴 ) ≠ 0 ) → ( tan ‘ - - 𝐴 ) = - ( tan ‘ - 𝐴 ) ) | |
| 37 | 35 21 36 | syl2anc | ⊢ ( ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ∧ 𝐴 < 0 ) → ( tan ‘ - - 𝐴 ) = - ( tan ‘ - 𝐴 ) ) |
| 38 | 34 37 | eqtr3d | ⊢ ( ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ∧ 𝐴 < 0 ) → ( tan ‘ 𝐴 ) = - ( tan ‘ - 𝐴 ) ) |
| 39 | 38 | fveq2d | ⊢ ( ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ∧ 𝐴 < 0 ) → ( abs ‘ ( tan ‘ 𝐴 ) ) = ( abs ‘ - ( tan ‘ - 𝐴 ) ) ) |
| 40 | 22 | recnd | ⊢ ( ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ∧ 𝐴 < 0 ) → ( tan ‘ - 𝐴 ) ∈ ℂ ) |
| 41 | 40 | absnegd | ⊢ ( ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ∧ 𝐴 < 0 ) → ( abs ‘ - ( tan ‘ - 𝐴 ) ) = ( abs ‘ ( tan ‘ - 𝐴 ) ) ) |
| 42 | 0red | ⊢ ( ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ∧ 𝐴 < 0 ) → 0 ∈ ℝ ) | |
| 43 | ltle | ⊢ ( ( 0 ∈ ℝ ∧ - 𝐴 ∈ ℝ ) → ( 0 < - 𝐴 → 0 ≤ - 𝐴 ) ) | |
| 44 | 26 3 43 | sylancr | ⊢ ( ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ∧ 𝐴 < 0 ) → ( 0 < - 𝐴 → 0 ≤ - 𝐴 ) ) |
| 45 | 5 44 | mpd | ⊢ ( ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ∧ 𝐴 < 0 ) → 0 ≤ - 𝐴 ) |
| 46 | 42 3 22 45 25 | letrd | ⊢ ( ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ∧ 𝐴 < 0 ) → 0 ≤ ( tan ‘ - 𝐴 ) ) |
| 47 | 22 46 | absidd | ⊢ ( ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ∧ 𝐴 < 0 ) → ( abs ‘ ( tan ‘ - 𝐴 ) ) = ( tan ‘ - 𝐴 ) ) |
| 48 | 39 41 47 | 3eqtrd | ⊢ ( ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ∧ 𝐴 < 0 ) → ( abs ‘ ( tan ‘ 𝐴 ) ) = ( tan ‘ - 𝐴 ) ) |
| 49 | 25 30 48 | 3brtr4d | ⊢ ( ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ∧ 𝐴 < 0 ) → ( abs ‘ 𝐴 ) ≤ ( abs ‘ ( tan ‘ 𝐴 ) ) ) |
| 50 | abs0 | ⊢ ( abs ‘ 0 ) = 0 | |
| 51 | 50 26 | eqeltri | ⊢ ( abs ‘ 0 ) ∈ ℝ |
| 52 | 51 | leidi | ⊢ ( abs ‘ 0 ) ≤ ( abs ‘ 0 ) |
| 53 | 52 | a1i | ⊢ ( ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ∧ 𝐴 = 0 ) → ( abs ‘ 0 ) ≤ ( abs ‘ 0 ) ) |
| 54 | simpr | ⊢ ( ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ∧ 𝐴 = 0 ) → 𝐴 = 0 ) | |
| 55 | 54 | fveq2d | ⊢ ( ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ∧ 𝐴 = 0 ) → ( abs ‘ 𝐴 ) = ( abs ‘ 0 ) ) |
| 56 | 54 | fveq2d | ⊢ ( ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ∧ 𝐴 = 0 ) → ( tan ‘ 𝐴 ) = ( tan ‘ 0 ) ) |
| 57 | tan0 | ⊢ ( tan ‘ 0 ) = 0 | |
| 58 | 56 57 | eqtrdi | ⊢ ( ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ∧ 𝐴 = 0 ) → ( tan ‘ 𝐴 ) = 0 ) |
| 59 | 58 | fveq2d | ⊢ ( ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ∧ 𝐴 = 0 ) → ( abs ‘ ( tan ‘ 𝐴 ) ) = ( abs ‘ 0 ) ) |
| 60 | 53 55 59 | 3brtr4d | ⊢ ( ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ∧ 𝐴 = 0 ) → ( abs ‘ 𝐴 ) ≤ ( abs ‘ ( tan ‘ 𝐴 ) ) ) |
| 61 | 1 | adantr | ⊢ ( ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ∧ 0 < 𝐴 ) → 𝐴 ∈ ℝ ) |
| 62 | simpr | ⊢ ( ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ∧ 0 < 𝐴 ) → 0 < 𝐴 ) | |
| 63 | 6 | simprd | ⊢ ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) → 𝐴 < ( π / 2 ) ) |
| 64 | 63 | adantr | ⊢ ( ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ∧ 0 < 𝐴 ) → 𝐴 < ( π / 2 ) ) |
| 65 | elioo2 | ⊢ ( ( 0 ∈ ℝ* ∧ ( π / 2 ) ∈ ℝ* ) → ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) ↔ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 < ( π / 2 ) ) ) ) | |
| 66 | 13 14 65 | mp2an | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) ↔ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 < ( π / 2 ) ) ) |
| 67 | 61 62 64 66 | syl3anbrc | ⊢ ( ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ∧ 0 < 𝐴 ) → 𝐴 ∈ ( 0 (,) ( π / 2 ) ) ) |
| 68 | sincosq1sgn | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( 0 < ( sin ‘ 𝐴 ) ∧ 0 < ( cos ‘ 𝐴 ) ) ) | |
| 69 | 67 68 | syl | ⊢ ( ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ∧ 0 < 𝐴 ) → ( 0 < ( sin ‘ 𝐴 ) ∧ 0 < ( cos ‘ 𝐴 ) ) ) |
| 70 | 69 | simprd | ⊢ ( ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ∧ 0 < 𝐴 ) → 0 < ( cos ‘ 𝐴 ) ) |
| 71 | 70 | gt0ne0d | ⊢ ( ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ∧ 0 < 𝐴 ) → ( cos ‘ 𝐴 ) ≠ 0 ) |
| 72 | 61 71 | retancld | ⊢ ( ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ∧ 0 < 𝐴 ) → ( tan ‘ 𝐴 ) ∈ ℝ ) |
| 73 | tangtx | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → 𝐴 < ( tan ‘ 𝐴 ) ) | |
| 74 | 67 73 | syl | ⊢ ( ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ∧ 0 < 𝐴 ) → 𝐴 < ( tan ‘ 𝐴 ) ) |
| 75 | 61 72 74 | ltled | ⊢ ( ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ∧ 0 < 𝐴 ) → 𝐴 ≤ ( tan ‘ 𝐴 ) ) |
| 76 | ltle | ⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 0 < 𝐴 → 0 ≤ 𝐴 ) ) | |
| 77 | 26 1 76 | sylancr | ⊢ ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) → ( 0 < 𝐴 → 0 ≤ 𝐴 ) ) |
| 78 | 77 | imp | ⊢ ( ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ∧ 0 < 𝐴 ) → 0 ≤ 𝐴 ) |
| 79 | 61 78 | absidd | ⊢ ( ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ∧ 0 < 𝐴 ) → ( abs ‘ 𝐴 ) = 𝐴 ) |
| 80 | 0red | ⊢ ( ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ∧ 0 < 𝐴 ) → 0 ∈ ℝ ) | |
| 81 | 80 61 72 78 75 | letrd | ⊢ ( ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ∧ 0 < 𝐴 ) → 0 ≤ ( tan ‘ 𝐴 ) ) |
| 82 | 72 81 | absidd | ⊢ ( ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ∧ 0 < 𝐴 ) → ( abs ‘ ( tan ‘ 𝐴 ) ) = ( tan ‘ 𝐴 ) ) |
| 83 | 75 79 82 | 3brtr4d | ⊢ ( ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ∧ 0 < 𝐴 ) → ( abs ‘ 𝐴 ) ≤ ( abs ‘ ( tan ‘ 𝐴 ) ) ) |
| 84 | lttri4 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ∈ ℝ ) → ( 𝐴 < 0 ∨ 𝐴 = 0 ∨ 0 < 𝐴 ) ) | |
| 85 | 1 26 84 | sylancl | ⊢ ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) → ( 𝐴 < 0 ∨ 𝐴 = 0 ∨ 0 < 𝐴 ) ) |
| 86 | 49 60 83 85 | mpjao3dan | ⊢ ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) → ( abs ‘ 𝐴 ) ≤ ( abs ‘ ( tan ‘ 𝐴 ) ) ) |