This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Double-angle formula for cosine. (Contributed by Paul Chapman, 24-Jan-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cos2t | ⊢ ( 𝐴 ∈ ℂ → ( cos ‘ ( 2 · 𝐴 ) ) = ( ( 2 · ( ( cos ‘ 𝐴 ) ↑ 2 ) ) − 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coscl | ⊢ ( 𝐴 ∈ ℂ → ( cos ‘ 𝐴 ) ∈ ℂ ) | |
| 2 | 1 | sqcld | ⊢ ( 𝐴 ∈ ℂ → ( ( cos ‘ 𝐴 ) ↑ 2 ) ∈ ℂ ) |
| 3 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 4 | subsub3 | ⊢ ( ( ( ( cos ‘ 𝐴 ) ↑ 2 ) ∈ ℂ ∧ 1 ∈ ℂ ∧ ( ( cos ‘ 𝐴 ) ↑ 2 ) ∈ ℂ ) → ( ( ( cos ‘ 𝐴 ) ↑ 2 ) − ( 1 − ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ) = ( ( ( ( cos ‘ 𝐴 ) ↑ 2 ) + ( ( cos ‘ 𝐴 ) ↑ 2 ) ) − 1 ) ) | |
| 5 | 3 4 | mp3an2 | ⊢ ( ( ( ( cos ‘ 𝐴 ) ↑ 2 ) ∈ ℂ ∧ ( ( cos ‘ 𝐴 ) ↑ 2 ) ∈ ℂ ) → ( ( ( cos ‘ 𝐴 ) ↑ 2 ) − ( 1 − ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ) = ( ( ( ( cos ‘ 𝐴 ) ↑ 2 ) + ( ( cos ‘ 𝐴 ) ↑ 2 ) ) − 1 ) ) |
| 6 | 2 2 5 | syl2anc | ⊢ ( 𝐴 ∈ ℂ → ( ( ( cos ‘ 𝐴 ) ↑ 2 ) − ( 1 − ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ) = ( ( ( ( cos ‘ 𝐴 ) ↑ 2 ) + ( ( cos ‘ 𝐴 ) ↑ 2 ) ) − 1 ) ) |
| 7 | cosadd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( cos ‘ ( 𝐴 + 𝐴 ) ) = ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐴 ) ) − ( ( sin ‘ 𝐴 ) · ( sin ‘ 𝐴 ) ) ) ) | |
| 8 | 7 | anidms | ⊢ ( 𝐴 ∈ ℂ → ( cos ‘ ( 𝐴 + 𝐴 ) ) = ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐴 ) ) − ( ( sin ‘ 𝐴 ) · ( sin ‘ 𝐴 ) ) ) ) |
| 9 | 2times | ⊢ ( 𝐴 ∈ ℂ → ( 2 · 𝐴 ) = ( 𝐴 + 𝐴 ) ) | |
| 10 | 9 | fveq2d | ⊢ ( 𝐴 ∈ ℂ → ( cos ‘ ( 2 · 𝐴 ) ) = ( cos ‘ ( 𝐴 + 𝐴 ) ) ) |
| 11 | 1 | sqvald | ⊢ ( 𝐴 ∈ ℂ → ( ( cos ‘ 𝐴 ) ↑ 2 ) = ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐴 ) ) ) |
| 12 | sincl | ⊢ ( 𝐴 ∈ ℂ → ( sin ‘ 𝐴 ) ∈ ℂ ) | |
| 13 | 12 | sqvald | ⊢ ( 𝐴 ∈ ℂ → ( ( sin ‘ 𝐴 ) ↑ 2 ) = ( ( sin ‘ 𝐴 ) · ( sin ‘ 𝐴 ) ) ) |
| 14 | 11 13 | oveq12d | ⊢ ( 𝐴 ∈ ℂ → ( ( ( cos ‘ 𝐴 ) ↑ 2 ) − ( ( sin ‘ 𝐴 ) ↑ 2 ) ) = ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐴 ) ) − ( ( sin ‘ 𝐴 ) · ( sin ‘ 𝐴 ) ) ) ) |
| 15 | 8 10 14 | 3eqtr4d | ⊢ ( 𝐴 ∈ ℂ → ( cos ‘ ( 2 · 𝐴 ) ) = ( ( ( cos ‘ 𝐴 ) ↑ 2 ) − ( ( sin ‘ 𝐴 ) ↑ 2 ) ) ) |
| 16 | 12 | sqcld | ⊢ ( 𝐴 ∈ ℂ → ( ( sin ‘ 𝐴 ) ↑ 2 ) ∈ ℂ ) |
| 17 | 16 2 | addcomd | ⊢ ( 𝐴 ∈ ℂ → ( ( ( sin ‘ 𝐴 ) ↑ 2 ) + ( ( cos ‘ 𝐴 ) ↑ 2 ) ) = ( ( ( cos ‘ 𝐴 ) ↑ 2 ) + ( ( sin ‘ 𝐴 ) ↑ 2 ) ) ) |
| 18 | sincossq | ⊢ ( 𝐴 ∈ ℂ → ( ( ( sin ‘ 𝐴 ) ↑ 2 ) + ( ( cos ‘ 𝐴 ) ↑ 2 ) ) = 1 ) | |
| 19 | 17 18 | eqtr3d | ⊢ ( 𝐴 ∈ ℂ → ( ( ( cos ‘ 𝐴 ) ↑ 2 ) + ( ( sin ‘ 𝐴 ) ↑ 2 ) ) = 1 ) |
| 20 | subadd | ⊢ ( ( 1 ∈ ℂ ∧ ( ( cos ‘ 𝐴 ) ↑ 2 ) ∈ ℂ ∧ ( ( sin ‘ 𝐴 ) ↑ 2 ) ∈ ℂ ) → ( ( 1 − ( ( cos ‘ 𝐴 ) ↑ 2 ) ) = ( ( sin ‘ 𝐴 ) ↑ 2 ) ↔ ( ( ( cos ‘ 𝐴 ) ↑ 2 ) + ( ( sin ‘ 𝐴 ) ↑ 2 ) ) = 1 ) ) | |
| 21 | 3 2 16 20 | mp3an2i | ⊢ ( 𝐴 ∈ ℂ → ( ( 1 − ( ( cos ‘ 𝐴 ) ↑ 2 ) ) = ( ( sin ‘ 𝐴 ) ↑ 2 ) ↔ ( ( ( cos ‘ 𝐴 ) ↑ 2 ) + ( ( sin ‘ 𝐴 ) ↑ 2 ) ) = 1 ) ) |
| 22 | 19 21 | mpbird | ⊢ ( 𝐴 ∈ ℂ → ( 1 − ( ( cos ‘ 𝐴 ) ↑ 2 ) ) = ( ( sin ‘ 𝐴 ) ↑ 2 ) ) |
| 23 | 22 | oveq2d | ⊢ ( 𝐴 ∈ ℂ → ( ( ( cos ‘ 𝐴 ) ↑ 2 ) − ( 1 − ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ) = ( ( ( cos ‘ 𝐴 ) ↑ 2 ) − ( ( sin ‘ 𝐴 ) ↑ 2 ) ) ) |
| 24 | 15 23 | eqtr4d | ⊢ ( 𝐴 ∈ ℂ → ( cos ‘ ( 2 · 𝐴 ) ) = ( ( ( cos ‘ 𝐴 ) ↑ 2 ) − ( 1 − ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ) ) |
| 25 | 2 | 2timesd | ⊢ ( 𝐴 ∈ ℂ → ( 2 · ( ( cos ‘ 𝐴 ) ↑ 2 ) ) = ( ( ( cos ‘ 𝐴 ) ↑ 2 ) + ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ) |
| 26 | 25 | oveq1d | ⊢ ( 𝐴 ∈ ℂ → ( ( 2 · ( ( cos ‘ 𝐴 ) ↑ 2 ) ) − 1 ) = ( ( ( ( cos ‘ 𝐴 ) ↑ 2 ) + ( ( cos ‘ 𝐴 ) ↑ 2 ) ) − 1 ) ) |
| 27 | 6 24 26 | 3eqtr4d | ⊢ ( 𝐴 ∈ ℂ → ( cos ‘ ( 2 · 𝐴 ) ) = ( ( 2 · ( ( cos ‘ 𝐴 ) ↑ 2 ) ) − 1 ) ) |