This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Nonnegative integer property expressed in terms of integers. (Contributed by NM, 9-May-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elnn0z | ⊢ ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℤ ∧ 0 ≤ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 | ⊢ ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) | |
| 2 | elnnz | ⊢ ( 𝑁 ∈ ℕ ↔ ( 𝑁 ∈ ℤ ∧ 0 < 𝑁 ) ) | |
| 3 | eqcom | ⊢ ( 𝑁 = 0 ↔ 0 = 𝑁 ) | |
| 4 | 2 3 | orbi12i | ⊢ ( ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ↔ ( ( 𝑁 ∈ ℤ ∧ 0 < 𝑁 ) ∨ 0 = 𝑁 ) ) |
| 5 | id | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℤ ) | |
| 6 | 0z | ⊢ 0 ∈ ℤ | |
| 7 | eleq1 | ⊢ ( 0 = 𝑁 → ( 0 ∈ ℤ ↔ 𝑁 ∈ ℤ ) ) | |
| 8 | 6 7 | mpbii | ⊢ ( 0 = 𝑁 → 𝑁 ∈ ℤ ) |
| 9 | 5 8 | jaoi | ⊢ ( ( 𝑁 ∈ ℤ ∨ 0 = 𝑁 ) → 𝑁 ∈ ℤ ) |
| 10 | orc | ⊢ ( 𝑁 ∈ ℤ → ( 𝑁 ∈ ℤ ∨ 0 = 𝑁 ) ) | |
| 11 | 9 10 | impbii | ⊢ ( ( 𝑁 ∈ ℤ ∨ 0 = 𝑁 ) ↔ 𝑁 ∈ ℤ ) |
| 12 | 11 | anbi1i | ⊢ ( ( ( 𝑁 ∈ ℤ ∨ 0 = 𝑁 ) ∧ ( 0 < 𝑁 ∨ 0 = 𝑁 ) ) ↔ ( 𝑁 ∈ ℤ ∧ ( 0 < 𝑁 ∨ 0 = 𝑁 ) ) ) |
| 13 | ordir | ⊢ ( ( ( 𝑁 ∈ ℤ ∧ 0 < 𝑁 ) ∨ 0 = 𝑁 ) ↔ ( ( 𝑁 ∈ ℤ ∨ 0 = 𝑁 ) ∧ ( 0 < 𝑁 ∨ 0 = 𝑁 ) ) ) | |
| 14 | 0re | ⊢ 0 ∈ ℝ | |
| 15 | zre | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) | |
| 16 | leloe | ⊢ ( ( 0 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 0 ≤ 𝑁 ↔ ( 0 < 𝑁 ∨ 0 = 𝑁 ) ) ) | |
| 17 | 14 15 16 | sylancr | ⊢ ( 𝑁 ∈ ℤ → ( 0 ≤ 𝑁 ↔ ( 0 < 𝑁 ∨ 0 = 𝑁 ) ) ) |
| 18 | 17 | pm5.32i | ⊢ ( ( 𝑁 ∈ ℤ ∧ 0 ≤ 𝑁 ) ↔ ( 𝑁 ∈ ℤ ∧ ( 0 < 𝑁 ∨ 0 = 𝑁 ) ) ) |
| 19 | 12 13 18 | 3bitr4i | ⊢ ( ( ( 𝑁 ∈ ℤ ∧ 0 < 𝑁 ) ∨ 0 = 𝑁 ) ↔ ( 𝑁 ∈ ℤ ∧ 0 ≤ 𝑁 ) ) |
| 20 | 1 4 19 | 3bitri | ⊢ ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℤ ∧ 0 ≤ 𝑁 ) ) |