This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An integer is odd iff its successor is even. (Contributed by Mario Carneiro, 5-Sep-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oddp1even | ⊢ ( 𝑁 ∈ ℤ → ( ¬ 2 ∥ 𝑁 ↔ 2 ∥ ( 𝑁 + 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oddm1even | ⊢ ( 𝑁 ∈ ℤ → ( ¬ 2 ∥ 𝑁 ↔ 2 ∥ ( 𝑁 − 1 ) ) ) | |
| 2 | 2z | ⊢ 2 ∈ ℤ | |
| 3 | peano2zm | ⊢ ( 𝑁 ∈ ℤ → ( 𝑁 − 1 ) ∈ ℤ ) | |
| 4 | dvdsadd | ⊢ ( ( 2 ∈ ℤ ∧ ( 𝑁 − 1 ) ∈ ℤ ) → ( 2 ∥ ( 𝑁 − 1 ) ↔ 2 ∥ ( 2 + ( 𝑁 − 1 ) ) ) ) | |
| 5 | 2 3 4 | sylancr | ⊢ ( 𝑁 ∈ ℤ → ( 2 ∥ ( 𝑁 − 1 ) ↔ 2 ∥ ( 2 + ( 𝑁 − 1 ) ) ) ) |
| 6 | 2cnd | ⊢ ( 𝑁 ∈ ℤ → 2 ∈ ℂ ) | |
| 7 | zcn | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) | |
| 8 | 1cnd | ⊢ ( 𝑁 ∈ ℤ → 1 ∈ ℂ ) | |
| 9 | 6 7 8 | addsub12d | ⊢ ( 𝑁 ∈ ℤ → ( 2 + ( 𝑁 − 1 ) ) = ( 𝑁 + ( 2 − 1 ) ) ) |
| 10 | 2m1e1 | ⊢ ( 2 − 1 ) = 1 | |
| 11 | 10 | oveq2i | ⊢ ( 𝑁 + ( 2 − 1 ) ) = ( 𝑁 + 1 ) |
| 12 | 9 11 | eqtrdi | ⊢ ( 𝑁 ∈ ℤ → ( 2 + ( 𝑁 − 1 ) ) = ( 𝑁 + 1 ) ) |
| 13 | 12 | breq2d | ⊢ ( 𝑁 ∈ ℤ → ( 2 ∥ ( 2 + ( 𝑁 − 1 ) ) ↔ 2 ∥ ( 𝑁 + 1 ) ) ) |
| 14 | 1 5 13 | 3bitrd | ⊢ ( 𝑁 ∈ ℤ → ( ¬ 2 ∥ 𝑁 ↔ 2 ∥ ( 𝑁 + 1 ) ) ) |