This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every positive integer is one or a successor. (Contributed by Mario Carneiro, 16-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nn1m1nn | ⊢ ( 𝐴 ∈ ℕ → ( 𝐴 = 1 ∨ ( 𝐴 − 1 ) ∈ ℕ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orc | ⊢ ( 𝑥 = 1 → ( 𝑥 = 1 ∨ ( 𝑥 − 1 ) ∈ ℕ ) ) | |
| 2 | 1cnd | ⊢ ( 𝑥 = 1 → 1 ∈ ℂ ) | |
| 3 | 1 2 | 2thd | ⊢ ( 𝑥 = 1 → ( ( 𝑥 = 1 ∨ ( 𝑥 − 1 ) ∈ ℕ ) ↔ 1 ∈ ℂ ) ) |
| 4 | eqeq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 = 1 ↔ 𝑦 = 1 ) ) | |
| 5 | oveq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 − 1 ) = ( 𝑦 − 1 ) ) | |
| 6 | 5 | eleq1d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 − 1 ) ∈ ℕ ↔ ( 𝑦 − 1 ) ∈ ℕ ) ) |
| 7 | 4 6 | orbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 = 1 ∨ ( 𝑥 − 1 ) ∈ ℕ ) ↔ ( 𝑦 = 1 ∨ ( 𝑦 − 1 ) ∈ ℕ ) ) ) |
| 8 | eqeq1 | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑥 = 1 ↔ ( 𝑦 + 1 ) = 1 ) ) | |
| 9 | oveq1 | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑥 − 1 ) = ( ( 𝑦 + 1 ) − 1 ) ) | |
| 10 | 9 | eleq1d | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝑥 − 1 ) ∈ ℕ ↔ ( ( 𝑦 + 1 ) − 1 ) ∈ ℕ ) ) |
| 11 | 8 10 | orbi12d | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝑥 = 1 ∨ ( 𝑥 − 1 ) ∈ ℕ ) ↔ ( ( 𝑦 + 1 ) = 1 ∨ ( ( 𝑦 + 1 ) − 1 ) ∈ ℕ ) ) ) |
| 12 | eqeq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 = 1 ↔ 𝐴 = 1 ) ) | |
| 13 | oveq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 − 1 ) = ( 𝐴 − 1 ) ) | |
| 14 | 13 | eleq1d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 − 1 ) ∈ ℕ ↔ ( 𝐴 − 1 ) ∈ ℕ ) ) |
| 15 | 12 14 | orbi12d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 = 1 ∨ ( 𝑥 − 1 ) ∈ ℕ ) ↔ ( 𝐴 = 1 ∨ ( 𝐴 − 1 ) ∈ ℕ ) ) ) |
| 16 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 17 | nncn | ⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℂ ) | |
| 18 | pncan | ⊢ ( ( 𝑦 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑦 + 1 ) − 1 ) = 𝑦 ) | |
| 19 | 17 16 18 | sylancl | ⊢ ( 𝑦 ∈ ℕ → ( ( 𝑦 + 1 ) − 1 ) = 𝑦 ) |
| 20 | id | ⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℕ ) | |
| 21 | 19 20 | eqeltrd | ⊢ ( 𝑦 ∈ ℕ → ( ( 𝑦 + 1 ) − 1 ) ∈ ℕ ) |
| 22 | 21 | olcd | ⊢ ( 𝑦 ∈ ℕ → ( ( 𝑦 + 1 ) = 1 ∨ ( ( 𝑦 + 1 ) − 1 ) ∈ ℕ ) ) |
| 23 | 22 | a1d | ⊢ ( 𝑦 ∈ ℕ → ( ( 𝑦 = 1 ∨ ( 𝑦 − 1 ) ∈ ℕ ) → ( ( 𝑦 + 1 ) = 1 ∨ ( ( 𝑦 + 1 ) − 1 ) ∈ ℕ ) ) ) |
| 24 | 3 7 11 15 16 23 | nnind | ⊢ ( 𝐴 ∈ ℕ → ( 𝐴 = 1 ∨ ( 𝐴 − 1 ) ∈ ℕ ) ) |