This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Exponentiation of negative one to an even power. (Contributed by Scott Fenton, 17-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | m1expeven | ⊢ ( 𝑁 ∈ ℤ → ( - 1 ↑ ( 2 · 𝑁 ) ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) | |
| 2 | 1 | 2timesd | ⊢ ( 𝑁 ∈ ℤ → ( 2 · 𝑁 ) = ( 𝑁 + 𝑁 ) ) |
| 3 | 2 | oveq2d | ⊢ ( 𝑁 ∈ ℤ → ( - 1 ↑ ( 2 · 𝑁 ) ) = ( - 1 ↑ ( 𝑁 + 𝑁 ) ) ) |
| 4 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 5 | neg1ne0 | ⊢ - 1 ≠ 0 | |
| 6 | expaddz | ⊢ ( ( ( - 1 ∈ ℂ ∧ - 1 ≠ 0 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( - 1 ↑ ( 𝑁 + 𝑁 ) ) = ( ( - 1 ↑ 𝑁 ) · ( - 1 ↑ 𝑁 ) ) ) | |
| 7 | 4 5 6 | mpanl12 | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( - 1 ↑ ( 𝑁 + 𝑁 ) ) = ( ( - 1 ↑ 𝑁 ) · ( - 1 ↑ 𝑁 ) ) ) |
| 8 | 7 | anidms | ⊢ ( 𝑁 ∈ ℤ → ( - 1 ↑ ( 𝑁 + 𝑁 ) ) = ( ( - 1 ↑ 𝑁 ) · ( - 1 ↑ 𝑁 ) ) ) |
| 9 | m1expcl2 | ⊢ ( 𝑁 ∈ ℤ → ( - 1 ↑ 𝑁 ) ∈ { - 1 , 1 } ) | |
| 10 | ovex | ⊢ ( - 1 ↑ 𝑁 ) ∈ V | |
| 11 | 10 | elpr | ⊢ ( ( - 1 ↑ 𝑁 ) ∈ { - 1 , 1 } ↔ ( ( - 1 ↑ 𝑁 ) = - 1 ∨ ( - 1 ↑ 𝑁 ) = 1 ) ) |
| 12 | oveq12 | ⊢ ( ( ( - 1 ↑ 𝑁 ) = - 1 ∧ ( - 1 ↑ 𝑁 ) = - 1 ) → ( ( - 1 ↑ 𝑁 ) · ( - 1 ↑ 𝑁 ) ) = ( - 1 · - 1 ) ) | |
| 13 | 12 | anidms | ⊢ ( ( - 1 ↑ 𝑁 ) = - 1 → ( ( - 1 ↑ 𝑁 ) · ( - 1 ↑ 𝑁 ) ) = ( - 1 · - 1 ) ) |
| 14 | neg1mulneg1e1 | ⊢ ( - 1 · - 1 ) = 1 | |
| 15 | 13 14 | eqtrdi | ⊢ ( ( - 1 ↑ 𝑁 ) = - 1 → ( ( - 1 ↑ 𝑁 ) · ( - 1 ↑ 𝑁 ) ) = 1 ) |
| 16 | oveq12 | ⊢ ( ( ( - 1 ↑ 𝑁 ) = 1 ∧ ( - 1 ↑ 𝑁 ) = 1 ) → ( ( - 1 ↑ 𝑁 ) · ( - 1 ↑ 𝑁 ) ) = ( 1 · 1 ) ) | |
| 17 | 16 | anidms | ⊢ ( ( - 1 ↑ 𝑁 ) = 1 → ( ( - 1 ↑ 𝑁 ) · ( - 1 ↑ 𝑁 ) ) = ( 1 · 1 ) ) |
| 18 | 1t1e1 | ⊢ ( 1 · 1 ) = 1 | |
| 19 | 17 18 | eqtrdi | ⊢ ( ( - 1 ↑ 𝑁 ) = 1 → ( ( - 1 ↑ 𝑁 ) · ( - 1 ↑ 𝑁 ) ) = 1 ) |
| 20 | 15 19 | jaoi | ⊢ ( ( ( - 1 ↑ 𝑁 ) = - 1 ∨ ( - 1 ↑ 𝑁 ) = 1 ) → ( ( - 1 ↑ 𝑁 ) · ( - 1 ↑ 𝑁 ) ) = 1 ) |
| 21 | 11 20 | sylbi | ⊢ ( ( - 1 ↑ 𝑁 ) ∈ { - 1 , 1 } → ( ( - 1 ↑ 𝑁 ) · ( - 1 ↑ 𝑁 ) ) = 1 ) |
| 22 | 9 21 | syl | ⊢ ( 𝑁 ∈ ℤ → ( ( - 1 ↑ 𝑁 ) · ( - 1 ↑ 𝑁 ) ) = 1 ) |
| 23 | 3 8 22 | 3eqtrd | ⊢ ( 𝑁 ∈ ℤ → ( - 1 ↑ ( 2 · 𝑁 ) ) = 1 ) |