This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product of two nonnegative numbers is nonnegative. (Contributed by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | leidd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| ltnegd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| addge0d.3 | ⊢ ( 𝜑 → 0 ≤ 𝐴 ) | ||
| addge0d.4 | ⊢ ( 𝜑 → 0 ≤ 𝐵 ) | ||
| Assertion | mulge0d | ⊢ ( 𝜑 → 0 ≤ ( 𝐴 · 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leidd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | ltnegd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | addge0d.3 | ⊢ ( 𝜑 → 0 ≤ 𝐴 ) | |
| 4 | addge0d.4 | ⊢ ( 𝜑 → 0 ≤ 𝐵 ) | |
| 5 | mulge0 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → 0 ≤ ( 𝐴 · 𝐵 ) ) | |
| 6 | 1 3 2 4 5 | syl22anc | ⊢ ( 𝜑 → 0 ≤ ( 𝐴 · 𝐵 ) ) |