This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An integer is odd iff it is one plus twice another integer. (Contributed by Scott Fenton, 3-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | odd2np1 | ⊢ ( 𝑁 ∈ ℤ → ( ¬ 2 ∥ 𝑁 ↔ ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2z | ⊢ 2 ∈ ℤ | |
| 2 | divides | ⊢ ( ( 2 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 2 ∥ 𝑁 ↔ ∃ 𝑘 ∈ ℤ ( 𝑘 · 2 ) = 𝑁 ) ) | |
| 3 | 1 2 | mpan | ⊢ ( 𝑁 ∈ ℤ → ( 2 ∥ 𝑁 ↔ ∃ 𝑘 ∈ ℤ ( 𝑘 · 2 ) = 𝑁 ) ) |
| 4 | 3 | notbid | ⊢ ( 𝑁 ∈ ℤ → ( ¬ 2 ∥ 𝑁 ↔ ¬ ∃ 𝑘 ∈ ℤ ( 𝑘 · 2 ) = 𝑁 ) ) |
| 5 | elznn0 | ⊢ ( 𝑁 ∈ ℤ ↔ ( 𝑁 ∈ ℝ ∧ ( 𝑁 ∈ ℕ0 ∨ - 𝑁 ∈ ℕ0 ) ) ) | |
| 6 | odd2np1lem | ⊢ ( 𝑁 ∈ ℕ0 → ( ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ∨ ∃ 𝑘 ∈ ℤ ( 𝑘 · 2 ) = 𝑁 ) ) | |
| 7 | 6 | adantl | ⊢ ( ( 𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) → ( ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ∨ ∃ 𝑘 ∈ ℤ ( 𝑘 · 2 ) = 𝑁 ) ) |
| 8 | peano2z | ⊢ ( 𝑥 ∈ ℤ → ( 𝑥 + 1 ) ∈ ℤ ) | |
| 9 | znegcl | ⊢ ( ( 𝑥 + 1 ) ∈ ℤ → - ( 𝑥 + 1 ) ∈ ℤ ) | |
| 10 | 8 9 | syl | ⊢ ( 𝑥 ∈ ℤ → - ( 𝑥 + 1 ) ∈ ℤ ) |
| 11 | 10 | ad2antlr | ⊢ ( ( ( 𝑁 ∈ ℝ ∧ 𝑥 ∈ ℤ ) ∧ ( ( 2 · 𝑥 ) + 1 ) = - 𝑁 ) → - ( 𝑥 + 1 ) ∈ ℤ ) |
| 12 | zcn | ⊢ ( 𝑥 ∈ ℤ → 𝑥 ∈ ℂ ) | |
| 13 | 2cn | ⊢ 2 ∈ ℂ | |
| 14 | mulcl | ⊢ ( ( 2 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( 2 · 𝑥 ) ∈ ℂ ) | |
| 15 | 13 14 | mpan | ⊢ ( 𝑥 ∈ ℂ → ( 2 · 𝑥 ) ∈ ℂ ) |
| 16 | peano2cn | ⊢ ( ( 2 · 𝑥 ) ∈ ℂ → ( ( 2 · 𝑥 ) + 1 ) ∈ ℂ ) | |
| 17 | 15 16 | syl | ⊢ ( 𝑥 ∈ ℂ → ( ( 2 · 𝑥 ) + 1 ) ∈ ℂ ) |
| 18 | 12 17 | syl | ⊢ ( 𝑥 ∈ ℤ → ( ( 2 · 𝑥 ) + 1 ) ∈ ℂ ) |
| 19 | 18 | adantl | ⊢ ( ( 𝑁 ∈ ℝ ∧ 𝑥 ∈ ℤ ) → ( ( 2 · 𝑥 ) + 1 ) ∈ ℂ ) |
| 20 | simpl | ⊢ ( ( 𝑁 ∈ ℝ ∧ 𝑥 ∈ ℤ ) → 𝑁 ∈ ℝ ) | |
| 21 | 20 | recnd | ⊢ ( ( 𝑁 ∈ ℝ ∧ 𝑥 ∈ ℤ ) → 𝑁 ∈ ℂ ) |
| 22 | negcon2 | ⊢ ( ( ( ( 2 · 𝑥 ) + 1 ) ∈ ℂ ∧ 𝑁 ∈ ℂ ) → ( ( ( 2 · 𝑥 ) + 1 ) = - 𝑁 ↔ 𝑁 = - ( ( 2 · 𝑥 ) + 1 ) ) ) | |
| 23 | 19 21 22 | syl2anc | ⊢ ( ( 𝑁 ∈ ℝ ∧ 𝑥 ∈ ℤ ) → ( ( ( 2 · 𝑥 ) + 1 ) = - 𝑁 ↔ 𝑁 = - ( ( 2 · 𝑥 ) + 1 ) ) ) |
| 24 | eqcom | ⊢ ( 𝑁 = - ( ( 2 · 𝑥 ) + 1 ) ↔ - ( ( 2 · 𝑥 ) + 1 ) = 𝑁 ) | |
| 25 | 13 12 14 | sylancr | ⊢ ( 𝑥 ∈ ℤ → ( 2 · 𝑥 ) ∈ ℂ ) |
| 26 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 27 | 13 26 | mulcli | ⊢ ( 2 · 1 ) ∈ ℂ |
| 28 | addsubass | ⊢ ( ( ( 2 · 𝑥 ) ∈ ℂ ∧ ( 2 · 1 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( 2 · 𝑥 ) + ( 2 · 1 ) ) − 1 ) = ( ( 2 · 𝑥 ) + ( ( 2 · 1 ) − 1 ) ) ) | |
| 29 | 27 26 28 | mp3an23 | ⊢ ( ( 2 · 𝑥 ) ∈ ℂ → ( ( ( 2 · 𝑥 ) + ( 2 · 1 ) ) − 1 ) = ( ( 2 · 𝑥 ) + ( ( 2 · 1 ) − 1 ) ) ) |
| 30 | 25 29 | syl | ⊢ ( 𝑥 ∈ ℤ → ( ( ( 2 · 𝑥 ) + ( 2 · 1 ) ) − 1 ) = ( ( 2 · 𝑥 ) + ( ( 2 · 1 ) − 1 ) ) ) |
| 31 | 2t1e2 | ⊢ ( 2 · 1 ) = 2 | |
| 32 | 31 | oveq1i | ⊢ ( ( 2 · 1 ) − 1 ) = ( 2 − 1 ) |
| 33 | 2m1e1 | ⊢ ( 2 − 1 ) = 1 | |
| 34 | 32 33 | eqtri | ⊢ ( ( 2 · 1 ) − 1 ) = 1 |
| 35 | 34 | oveq2i | ⊢ ( ( 2 · 𝑥 ) + ( ( 2 · 1 ) − 1 ) ) = ( ( 2 · 𝑥 ) + 1 ) |
| 36 | 30 35 | eqtr2di | ⊢ ( 𝑥 ∈ ℤ → ( ( 2 · 𝑥 ) + 1 ) = ( ( ( 2 · 𝑥 ) + ( 2 · 1 ) ) − 1 ) ) |
| 37 | adddi | ⊢ ( ( 2 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 2 · ( 𝑥 + 1 ) ) = ( ( 2 · 𝑥 ) + ( 2 · 1 ) ) ) | |
| 38 | 13 26 37 | mp3an13 | ⊢ ( 𝑥 ∈ ℂ → ( 2 · ( 𝑥 + 1 ) ) = ( ( 2 · 𝑥 ) + ( 2 · 1 ) ) ) |
| 39 | 12 38 | syl | ⊢ ( 𝑥 ∈ ℤ → ( 2 · ( 𝑥 + 1 ) ) = ( ( 2 · 𝑥 ) + ( 2 · 1 ) ) ) |
| 40 | 39 | oveq1d | ⊢ ( 𝑥 ∈ ℤ → ( ( 2 · ( 𝑥 + 1 ) ) − 1 ) = ( ( ( 2 · 𝑥 ) + ( 2 · 1 ) ) − 1 ) ) |
| 41 | 36 40 | eqtr4d | ⊢ ( 𝑥 ∈ ℤ → ( ( 2 · 𝑥 ) + 1 ) = ( ( 2 · ( 𝑥 + 1 ) ) − 1 ) ) |
| 42 | 41 | negeqd | ⊢ ( 𝑥 ∈ ℤ → - ( ( 2 · 𝑥 ) + 1 ) = - ( ( 2 · ( 𝑥 + 1 ) ) − 1 ) ) |
| 43 | 8 | zcnd | ⊢ ( 𝑥 ∈ ℤ → ( 𝑥 + 1 ) ∈ ℂ ) |
| 44 | mulneg2 | ⊢ ( ( 2 ∈ ℂ ∧ ( 𝑥 + 1 ) ∈ ℂ ) → ( 2 · - ( 𝑥 + 1 ) ) = - ( 2 · ( 𝑥 + 1 ) ) ) | |
| 45 | 13 43 44 | sylancr | ⊢ ( 𝑥 ∈ ℤ → ( 2 · - ( 𝑥 + 1 ) ) = - ( 2 · ( 𝑥 + 1 ) ) ) |
| 46 | 45 | oveq1d | ⊢ ( 𝑥 ∈ ℤ → ( ( 2 · - ( 𝑥 + 1 ) ) + 1 ) = ( - ( 2 · ( 𝑥 + 1 ) ) + 1 ) ) |
| 47 | mulcl | ⊢ ( ( 2 ∈ ℂ ∧ ( 𝑥 + 1 ) ∈ ℂ ) → ( 2 · ( 𝑥 + 1 ) ) ∈ ℂ ) | |
| 48 | 13 43 47 | sylancr | ⊢ ( 𝑥 ∈ ℤ → ( 2 · ( 𝑥 + 1 ) ) ∈ ℂ ) |
| 49 | negsubdi | ⊢ ( ( ( 2 · ( 𝑥 + 1 ) ) ∈ ℂ ∧ 1 ∈ ℂ ) → - ( ( 2 · ( 𝑥 + 1 ) ) − 1 ) = ( - ( 2 · ( 𝑥 + 1 ) ) + 1 ) ) | |
| 50 | 48 26 49 | sylancl | ⊢ ( 𝑥 ∈ ℤ → - ( ( 2 · ( 𝑥 + 1 ) ) − 1 ) = ( - ( 2 · ( 𝑥 + 1 ) ) + 1 ) ) |
| 51 | 46 50 | eqtr4d | ⊢ ( 𝑥 ∈ ℤ → ( ( 2 · - ( 𝑥 + 1 ) ) + 1 ) = - ( ( 2 · ( 𝑥 + 1 ) ) − 1 ) ) |
| 52 | 42 51 | eqtr4d | ⊢ ( 𝑥 ∈ ℤ → - ( ( 2 · 𝑥 ) + 1 ) = ( ( 2 · - ( 𝑥 + 1 ) ) + 1 ) ) |
| 53 | 52 | adantl | ⊢ ( ( 𝑁 ∈ ℝ ∧ 𝑥 ∈ ℤ ) → - ( ( 2 · 𝑥 ) + 1 ) = ( ( 2 · - ( 𝑥 + 1 ) ) + 1 ) ) |
| 54 | 53 | eqeq1d | ⊢ ( ( 𝑁 ∈ ℝ ∧ 𝑥 ∈ ℤ ) → ( - ( ( 2 · 𝑥 ) + 1 ) = 𝑁 ↔ ( ( 2 · - ( 𝑥 + 1 ) ) + 1 ) = 𝑁 ) ) |
| 55 | 24 54 | bitrid | ⊢ ( ( 𝑁 ∈ ℝ ∧ 𝑥 ∈ ℤ ) → ( 𝑁 = - ( ( 2 · 𝑥 ) + 1 ) ↔ ( ( 2 · - ( 𝑥 + 1 ) ) + 1 ) = 𝑁 ) ) |
| 56 | 23 55 | bitrd | ⊢ ( ( 𝑁 ∈ ℝ ∧ 𝑥 ∈ ℤ ) → ( ( ( 2 · 𝑥 ) + 1 ) = - 𝑁 ↔ ( ( 2 · - ( 𝑥 + 1 ) ) + 1 ) = 𝑁 ) ) |
| 57 | 56 | biimpa | ⊢ ( ( ( 𝑁 ∈ ℝ ∧ 𝑥 ∈ ℤ ) ∧ ( ( 2 · 𝑥 ) + 1 ) = - 𝑁 ) → ( ( 2 · - ( 𝑥 + 1 ) ) + 1 ) = 𝑁 ) |
| 58 | oveq2 | ⊢ ( 𝑛 = - ( 𝑥 + 1 ) → ( 2 · 𝑛 ) = ( 2 · - ( 𝑥 + 1 ) ) ) | |
| 59 | 58 | oveq1d | ⊢ ( 𝑛 = - ( 𝑥 + 1 ) → ( ( 2 · 𝑛 ) + 1 ) = ( ( 2 · - ( 𝑥 + 1 ) ) + 1 ) ) |
| 60 | 59 | eqeq1d | ⊢ ( 𝑛 = - ( 𝑥 + 1 ) → ( ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ↔ ( ( 2 · - ( 𝑥 + 1 ) ) + 1 ) = 𝑁 ) ) |
| 61 | 60 | rspcev | ⊢ ( ( - ( 𝑥 + 1 ) ∈ ℤ ∧ ( ( 2 · - ( 𝑥 + 1 ) ) + 1 ) = 𝑁 ) → ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) |
| 62 | 11 57 61 | syl2anc | ⊢ ( ( ( 𝑁 ∈ ℝ ∧ 𝑥 ∈ ℤ ) ∧ ( ( 2 · 𝑥 ) + 1 ) = - 𝑁 ) → ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) |
| 63 | 62 | rexlimdva2 | ⊢ ( 𝑁 ∈ ℝ → ( ∃ 𝑥 ∈ ℤ ( ( 2 · 𝑥 ) + 1 ) = - 𝑁 → ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) |
| 64 | znegcl | ⊢ ( 𝑦 ∈ ℤ → - 𝑦 ∈ ℤ ) | |
| 65 | 64 | ad2antlr | ⊢ ( ( ( 𝑁 ∈ ℝ ∧ 𝑦 ∈ ℤ ) ∧ ( 𝑦 · 2 ) = - 𝑁 ) → - 𝑦 ∈ ℤ ) |
| 66 | zcn | ⊢ ( 𝑦 ∈ ℤ → 𝑦 ∈ ℂ ) | |
| 67 | mulcl | ⊢ ( ( 𝑦 ∈ ℂ ∧ 2 ∈ ℂ ) → ( 𝑦 · 2 ) ∈ ℂ ) | |
| 68 | 66 13 67 | sylancl | ⊢ ( 𝑦 ∈ ℤ → ( 𝑦 · 2 ) ∈ ℂ ) |
| 69 | recn | ⊢ ( 𝑁 ∈ ℝ → 𝑁 ∈ ℂ ) | |
| 70 | negcon2 | ⊢ ( ( ( 𝑦 · 2 ) ∈ ℂ ∧ 𝑁 ∈ ℂ ) → ( ( 𝑦 · 2 ) = - 𝑁 ↔ 𝑁 = - ( 𝑦 · 2 ) ) ) | |
| 71 | 68 69 70 | syl2anr | ⊢ ( ( 𝑁 ∈ ℝ ∧ 𝑦 ∈ ℤ ) → ( ( 𝑦 · 2 ) = - 𝑁 ↔ 𝑁 = - ( 𝑦 · 2 ) ) ) |
| 72 | eqcom | ⊢ ( 𝑁 = - ( 𝑦 · 2 ) ↔ - ( 𝑦 · 2 ) = 𝑁 ) | |
| 73 | mulneg1 | ⊢ ( ( 𝑦 ∈ ℂ ∧ 2 ∈ ℂ ) → ( - 𝑦 · 2 ) = - ( 𝑦 · 2 ) ) | |
| 74 | 66 13 73 | sylancl | ⊢ ( 𝑦 ∈ ℤ → ( - 𝑦 · 2 ) = - ( 𝑦 · 2 ) ) |
| 75 | 74 | adantl | ⊢ ( ( 𝑁 ∈ ℝ ∧ 𝑦 ∈ ℤ ) → ( - 𝑦 · 2 ) = - ( 𝑦 · 2 ) ) |
| 76 | 75 | eqeq1d | ⊢ ( ( 𝑁 ∈ ℝ ∧ 𝑦 ∈ ℤ ) → ( ( - 𝑦 · 2 ) = 𝑁 ↔ - ( 𝑦 · 2 ) = 𝑁 ) ) |
| 77 | 72 76 | bitr4id | ⊢ ( ( 𝑁 ∈ ℝ ∧ 𝑦 ∈ ℤ ) → ( 𝑁 = - ( 𝑦 · 2 ) ↔ ( - 𝑦 · 2 ) = 𝑁 ) ) |
| 78 | 71 77 | bitrd | ⊢ ( ( 𝑁 ∈ ℝ ∧ 𝑦 ∈ ℤ ) → ( ( 𝑦 · 2 ) = - 𝑁 ↔ ( - 𝑦 · 2 ) = 𝑁 ) ) |
| 79 | 78 | biimpa | ⊢ ( ( ( 𝑁 ∈ ℝ ∧ 𝑦 ∈ ℤ ) ∧ ( 𝑦 · 2 ) = - 𝑁 ) → ( - 𝑦 · 2 ) = 𝑁 ) |
| 80 | oveq1 | ⊢ ( 𝑘 = - 𝑦 → ( 𝑘 · 2 ) = ( - 𝑦 · 2 ) ) | |
| 81 | 80 | eqeq1d | ⊢ ( 𝑘 = - 𝑦 → ( ( 𝑘 · 2 ) = 𝑁 ↔ ( - 𝑦 · 2 ) = 𝑁 ) ) |
| 82 | 81 | rspcev | ⊢ ( ( - 𝑦 ∈ ℤ ∧ ( - 𝑦 · 2 ) = 𝑁 ) → ∃ 𝑘 ∈ ℤ ( 𝑘 · 2 ) = 𝑁 ) |
| 83 | 65 79 82 | syl2anc | ⊢ ( ( ( 𝑁 ∈ ℝ ∧ 𝑦 ∈ ℤ ) ∧ ( 𝑦 · 2 ) = - 𝑁 ) → ∃ 𝑘 ∈ ℤ ( 𝑘 · 2 ) = 𝑁 ) |
| 84 | 83 | rexlimdva2 | ⊢ ( 𝑁 ∈ ℝ → ( ∃ 𝑦 ∈ ℤ ( 𝑦 · 2 ) = - 𝑁 → ∃ 𝑘 ∈ ℤ ( 𝑘 · 2 ) = 𝑁 ) ) |
| 85 | 63 84 | orim12d | ⊢ ( 𝑁 ∈ ℝ → ( ( ∃ 𝑥 ∈ ℤ ( ( 2 · 𝑥 ) + 1 ) = - 𝑁 ∨ ∃ 𝑦 ∈ ℤ ( 𝑦 · 2 ) = - 𝑁 ) → ( ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ∨ ∃ 𝑘 ∈ ℤ ( 𝑘 · 2 ) = 𝑁 ) ) ) |
| 86 | odd2np1lem | ⊢ ( - 𝑁 ∈ ℕ0 → ( ∃ 𝑥 ∈ ℤ ( ( 2 · 𝑥 ) + 1 ) = - 𝑁 ∨ ∃ 𝑦 ∈ ℤ ( 𝑦 · 2 ) = - 𝑁 ) ) | |
| 87 | 85 86 | impel | ⊢ ( ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ0 ) → ( ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ∨ ∃ 𝑘 ∈ ℤ ( 𝑘 · 2 ) = 𝑁 ) ) |
| 88 | 7 87 | jaodan | ⊢ ( ( 𝑁 ∈ ℝ ∧ ( 𝑁 ∈ ℕ0 ∨ - 𝑁 ∈ ℕ0 ) ) → ( ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ∨ ∃ 𝑘 ∈ ℤ ( 𝑘 · 2 ) = 𝑁 ) ) |
| 89 | 5 88 | sylbi | ⊢ ( 𝑁 ∈ ℤ → ( ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ∨ ∃ 𝑘 ∈ ℤ ( 𝑘 · 2 ) = 𝑁 ) ) |
| 90 | halfnz | ⊢ ¬ ( 1 / 2 ) ∈ ℤ | |
| 91 | reeanv | ⊢ ( ∃ 𝑛 ∈ ℤ ∃ 𝑘 ∈ ℤ ( ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ∧ ( 𝑘 · 2 ) = 𝑁 ) ↔ ( ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ∧ ∃ 𝑘 ∈ ℤ ( 𝑘 · 2 ) = 𝑁 ) ) | |
| 92 | eqtr3 | ⊢ ( ( ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ∧ ( 𝑘 · 2 ) = 𝑁 ) → ( ( 2 · 𝑛 ) + 1 ) = ( 𝑘 · 2 ) ) | |
| 93 | zcn | ⊢ ( 𝑘 ∈ ℤ → 𝑘 ∈ ℂ ) | |
| 94 | mulcom | ⊢ ( ( 𝑘 ∈ ℂ ∧ 2 ∈ ℂ ) → ( 𝑘 · 2 ) = ( 2 · 𝑘 ) ) | |
| 95 | 93 13 94 | sylancl | ⊢ ( 𝑘 ∈ ℤ → ( 𝑘 · 2 ) = ( 2 · 𝑘 ) ) |
| 96 | 95 | eqeq2d | ⊢ ( 𝑘 ∈ ℤ → ( ( ( 2 · 𝑛 ) + 1 ) = ( 𝑘 · 2 ) ↔ ( ( 2 · 𝑛 ) + 1 ) = ( 2 · 𝑘 ) ) ) |
| 97 | 96 | adantl | ⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( ( ( 2 · 𝑛 ) + 1 ) = ( 𝑘 · 2 ) ↔ ( ( 2 · 𝑛 ) + 1 ) = ( 2 · 𝑘 ) ) ) |
| 98 | mulcl | ⊢ ( ( 2 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( 2 · 𝑘 ) ∈ ℂ ) | |
| 99 | 13 93 98 | sylancr | ⊢ ( 𝑘 ∈ ℤ → ( 2 · 𝑘 ) ∈ ℂ ) |
| 100 | zcn | ⊢ ( 𝑛 ∈ ℤ → 𝑛 ∈ ℂ ) | |
| 101 | mulcl | ⊢ ( ( 2 ∈ ℂ ∧ 𝑛 ∈ ℂ ) → ( 2 · 𝑛 ) ∈ ℂ ) | |
| 102 | 13 100 101 | sylancr | ⊢ ( 𝑛 ∈ ℤ → ( 2 · 𝑛 ) ∈ ℂ ) |
| 103 | subadd | ⊢ ( ( ( 2 · 𝑘 ) ∈ ℂ ∧ ( 2 · 𝑛 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( 2 · 𝑘 ) − ( 2 · 𝑛 ) ) = 1 ↔ ( ( 2 · 𝑛 ) + 1 ) = ( 2 · 𝑘 ) ) ) | |
| 104 | 26 103 | mp3an3 | ⊢ ( ( ( 2 · 𝑘 ) ∈ ℂ ∧ ( 2 · 𝑛 ) ∈ ℂ ) → ( ( ( 2 · 𝑘 ) − ( 2 · 𝑛 ) ) = 1 ↔ ( ( 2 · 𝑛 ) + 1 ) = ( 2 · 𝑘 ) ) ) |
| 105 | 99 102 104 | syl2anr | ⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( ( ( 2 · 𝑘 ) − ( 2 · 𝑛 ) ) = 1 ↔ ( ( 2 · 𝑛 ) + 1 ) = ( 2 · 𝑘 ) ) ) |
| 106 | subcl | ⊢ ( ( 𝑘 ∈ ℂ ∧ 𝑛 ∈ ℂ ) → ( 𝑘 − 𝑛 ) ∈ ℂ ) | |
| 107 | 2cnne0 | ⊢ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) | |
| 108 | eqcom | ⊢ ( ( 𝑘 − 𝑛 ) = ( 1 / 2 ) ↔ ( 1 / 2 ) = ( 𝑘 − 𝑛 ) ) | |
| 109 | divmul | ⊢ ( ( 1 ∈ ℂ ∧ ( 𝑘 − 𝑛 ) ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) → ( ( 1 / 2 ) = ( 𝑘 − 𝑛 ) ↔ ( 2 · ( 𝑘 − 𝑛 ) ) = 1 ) ) | |
| 110 | 108 109 | bitrid | ⊢ ( ( 1 ∈ ℂ ∧ ( 𝑘 − 𝑛 ) ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) → ( ( 𝑘 − 𝑛 ) = ( 1 / 2 ) ↔ ( 2 · ( 𝑘 − 𝑛 ) ) = 1 ) ) |
| 111 | 26 107 110 | mp3an13 | ⊢ ( ( 𝑘 − 𝑛 ) ∈ ℂ → ( ( 𝑘 − 𝑛 ) = ( 1 / 2 ) ↔ ( 2 · ( 𝑘 − 𝑛 ) ) = 1 ) ) |
| 112 | 106 111 | syl | ⊢ ( ( 𝑘 ∈ ℂ ∧ 𝑛 ∈ ℂ ) → ( ( 𝑘 − 𝑛 ) = ( 1 / 2 ) ↔ ( 2 · ( 𝑘 − 𝑛 ) ) = 1 ) ) |
| 113 | 112 | ancoms | ⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( ( 𝑘 − 𝑛 ) = ( 1 / 2 ) ↔ ( 2 · ( 𝑘 − 𝑛 ) ) = 1 ) ) |
| 114 | subdi | ⊢ ( ( 2 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 𝑛 ∈ ℂ ) → ( 2 · ( 𝑘 − 𝑛 ) ) = ( ( 2 · 𝑘 ) − ( 2 · 𝑛 ) ) ) | |
| 115 | 13 114 | mp3an1 | ⊢ ( ( 𝑘 ∈ ℂ ∧ 𝑛 ∈ ℂ ) → ( 2 · ( 𝑘 − 𝑛 ) ) = ( ( 2 · 𝑘 ) − ( 2 · 𝑛 ) ) ) |
| 116 | 115 | ancoms | ⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( 2 · ( 𝑘 − 𝑛 ) ) = ( ( 2 · 𝑘 ) − ( 2 · 𝑛 ) ) ) |
| 117 | 116 | eqeq1d | ⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( ( 2 · ( 𝑘 − 𝑛 ) ) = 1 ↔ ( ( 2 · 𝑘 ) − ( 2 · 𝑛 ) ) = 1 ) ) |
| 118 | 113 117 | bitrd | ⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( ( 𝑘 − 𝑛 ) = ( 1 / 2 ) ↔ ( ( 2 · 𝑘 ) − ( 2 · 𝑛 ) ) = 1 ) ) |
| 119 | 100 93 118 | syl2an | ⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( ( 𝑘 − 𝑛 ) = ( 1 / 2 ) ↔ ( ( 2 · 𝑘 ) − ( 2 · 𝑛 ) ) = 1 ) ) |
| 120 | zsubcl | ⊢ ( ( 𝑘 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( 𝑘 − 𝑛 ) ∈ ℤ ) | |
| 121 | eleq1 | ⊢ ( ( 𝑘 − 𝑛 ) = ( 1 / 2 ) → ( ( 𝑘 − 𝑛 ) ∈ ℤ ↔ ( 1 / 2 ) ∈ ℤ ) ) | |
| 122 | 120 121 | syl5ibcom | ⊢ ( ( 𝑘 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( ( 𝑘 − 𝑛 ) = ( 1 / 2 ) → ( 1 / 2 ) ∈ ℤ ) ) |
| 123 | 122 | ancoms | ⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( ( 𝑘 − 𝑛 ) = ( 1 / 2 ) → ( 1 / 2 ) ∈ ℤ ) ) |
| 124 | 119 123 | sylbird | ⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( ( ( 2 · 𝑘 ) − ( 2 · 𝑛 ) ) = 1 → ( 1 / 2 ) ∈ ℤ ) ) |
| 125 | 105 124 | sylbird | ⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( ( ( 2 · 𝑛 ) + 1 ) = ( 2 · 𝑘 ) → ( 1 / 2 ) ∈ ℤ ) ) |
| 126 | 97 125 | sylbid | ⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( ( ( 2 · 𝑛 ) + 1 ) = ( 𝑘 · 2 ) → ( 1 / 2 ) ∈ ℤ ) ) |
| 127 | 92 126 | syl5 | ⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( ( ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ∧ ( 𝑘 · 2 ) = 𝑁 ) → ( 1 / 2 ) ∈ ℤ ) ) |
| 128 | 127 | rexlimivv | ⊢ ( ∃ 𝑛 ∈ ℤ ∃ 𝑘 ∈ ℤ ( ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ∧ ( 𝑘 · 2 ) = 𝑁 ) → ( 1 / 2 ) ∈ ℤ ) |
| 129 | 91 128 | sylbir | ⊢ ( ( ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ∧ ∃ 𝑘 ∈ ℤ ( 𝑘 · 2 ) = 𝑁 ) → ( 1 / 2 ) ∈ ℤ ) |
| 130 | 90 129 | mto | ⊢ ¬ ( ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ∧ ∃ 𝑘 ∈ ℤ ( 𝑘 · 2 ) = 𝑁 ) |
| 131 | pm5.17 | ⊢ ( ( ( ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ∨ ∃ 𝑘 ∈ ℤ ( 𝑘 · 2 ) = 𝑁 ) ∧ ¬ ( ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ∧ ∃ 𝑘 ∈ ℤ ( 𝑘 · 2 ) = 𝑁 ) ) ↔ ( ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ↔ ¬ ∃ 𝑘 ∈ ℤ ( 𝑘 · 2 ) = 𝑁 ) ) | |
| 132 | bicom | ⊢ ( ( ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ↔ ¬ ∃ 𝑘 ∈ ℤ ( 𝑘 · 2 ) = 𝑁 ) ↔ ( ¬ ∃ 𝑘 ∈ ℤ ( 𝑘 · 2 ) = 𝑁 ↔ ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) | |
| 133 | 131 132 | bitri | ⊢ ( ( ( ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ∨ ∃ 𝑘 ∈ ℤ ( 𝑘 · 2 ) = 𝑁 ) ∧ ¬ ( ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ∧ ∃ 𝑘 ∈ ℤ ( 𝑘 · 2 ) = 𝑁 ) ) ↔ ( ¬ ∃ 𝑘 ∈ ℤ ( 𝑘 · 2 ) = 𝑁 ↔ ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) |
| 134 | 89 130 133 | sylanblc | ⊢ ( 𝑁 ∈ ℤ → ( ¬ ∃ 𝑘 ∈ ℤ ( 𝑘 · 2 ) = 𝑁 ↔ ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) |
| 135 | 4 134 | bitrd | ⊢ ( 𝑁 ∈ ℤ → ( ¬ 2 ∥ 𝑁 ↔ ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) |