This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Power series expression for the logarithm. (Contributed by Mario Carneiro, 31-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | logtayl2.s | ⊢ 𝑆 = ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) | |
| Assertion | logtayl2 | ⊢ ( 𝐴 ∈ 𝑆 → seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( ( ( - 1 ↑ ( 𝑘 − 1 ) ) / 𝑘 ) · ( ( 𝐴 − 1 ) ↑ 𝑘 ) ) ) ) ⇝ ( log ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | logtayl2.s | ⊢ 𝑆 = ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) | |
| 2 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 3 | 1zzd | ⊢ ( 𝐴 ∈ 𝑆 → 1 ∈ ℤ ) | |
| 4 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 5 | 4 | a1i | ⊢ ( 𝐴 ∈ 𝑆 → - 1 ∈ ℂ ) |
| 6 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 7 | 1 | eleq2i | ⊢ ( 𝐴 ∈ 𝑆 ↔ 𝐴 ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ) |
| 8 | cnxmet | ⊢ ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) | |
| 9 | 1xr | ⊢ 1 ∈ ℝ* | |
| 10 | elbl | ⊢ ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 1 ∈ ℂ ∧ 1 ∈ ℝ* ) → ( 𝐴 ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ↔ ( 𝐴 ∈ ℂ ∧ ( 1 ( abs ∘ − ) 𝐴 ) < 1 ) ) ) | |
| 11 | 8 6 9 10 | mp3an | ⊢ ( 𝐴 ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ↔ ( 𝐴 ∈ ℂ ∧ ( 1 ( abs ∘ − ) 𝐴 ) < 1 ) ) |
| 12 | 7 11 | bitri | ⊢ ( 𝐴 ∈ 𝑆 ↔ ( 𝐴 ∈ ℂ ∧ ( 1 ( abs ∘ − ) 𝐴 ) < 1 ) ) |
| 13 | 12 | simplbi | ⊢ ( 𝐴 ∈ 𝑆 → 𝐴 ∈ ℂ ) |
| 14 | subcl | ⊢ ( ( 1 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( 1 − 𝐴 ) ∈ ℂ ) | |
| 15 | 6 13 14 | sylancr | ⊢ ( 𝐴 ∈ 𝑆 → ( 1 − 𝐴 ) ∈ ℂ ) |
| 16 | eqid | ⊢ ( abs ∘ − ) = ( abs ∘ − ) | |
| 17 | 16 | cnmetdval | ⊢ ( ( 1 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( 1 ( abs ∘ − ) 𝐴 ) = ( abs ‘ ( 1 − 𝐴 ) ) ) |
| 18 | 6 13 17 | sylancr | ⊢ ( 𝐴 ∈ 𝑆 → ( 1 ( abs ∘ − ) 𝐴 ) = ( abs ‘ ( 1 − 𝐴 ) ) ) |
| 19 | 12 | simprbi | ⊢ ( 𝐴 ∈ 𝑆 → ( 1 ( abs ∘ − ) 𝐴 ) < 1 ) |
| 20 | 18 19 | eqbrtrrd | ⊢ ( 𝐴 ∈ 𝑆 → ( abs ‘ ( 1 − 𝐴 ) ) < 1 ) |
| 21 | logtayl | ⊢ ( ( ( 1 − 𝐴 ) ∈ ℂ ∧ ( abs ‘ ( 1 − 𝐴 ) ) < 1 ) → seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( ( ( 1 − 𝐴 ) ↑ 𝑘 ) / 𝑘 ) ) ) ⇝ - ( log ‘ ( 1 − ( 1 − 𝐴 ) ) ) ) | |
| 22 | 15 20 21 | syl2anc | ⊢ ( 𝐴 ∈ 𝑆 → seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( ( ( 1 − 𝐴 ) ↑ 𝑘 ) / 𝑘 ) ) ) ⇝ - ( log ‘ ( 1 − ( 1 − 𝐴 ) ) ) ) |
| 23 | nncan | ⊢ ( ( 1 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( 1 − ( 1 − 𝐴 ) ) = 𝐴 ) | |
| 24 | 6 13 23 | sylancr | ⊢ ( 𝐴 ∈ 𝑆 → ( 1 − ( 1 − 𝐴 ) ) = 𝐴 ) |
| 25 | 24 | fveq2d | ⊢ ( 𝐴 ∈ 𝑆 → ( log ‘ ( 1 − ( 1 − 𝐴 ) ) ) = ( log ‘ 𝐴 ) ) |
| 26 | 25 | negeqd | ⊢ ( 𝐴 ∈ 𝑆 → - ( log ‘ ( 1 − ( 1 − 𝐴 ) ) ) = - ( log ‘ 𝐴 ) ) |
| 27 | 22 26 | breqtrd | ⊢ ( 𝐴 ∈ 𝑆 → seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( ( ( 1 − 𝐴 ) ↑ 𝑘 ) / 𝑘 ) ) ) ⇝ - ( log ‘ 𝐴 ) ) |
| 28 | oveq2 | ⊢ ( 𝑘 = 𝑛 → ( ( 1 − 𝐴 ) ↑ 𝑘 ) = ( ( 1 − 𝐴 ) ↑ 𝑛 ) ) | |
| 29 | id | ⊢ ( 𝑘 = 𝑛 → 𝑘 = 𝑛 ) | |
| 30 | 28 29 | oveq12d | ⊢ ( 𝑘 = 𝑛 → ( ( ( 1 − 𝐴 ) ↑ 𝑘 ) / 𝑘 ) = ( ( ( 1 − 𝐴 ) ↑ 𝑛 ) / 𝑛 ) ) |
| 31 | eqid | ⊢ ( 𝑘 ∈ ℕ ↦ ( ( ( 1 − 𝐴 ) ↑ 𝑘 ) / 𝑘 ) ) = ( 𝑘 ∈ ℕ ↦ ( ( ( 1 − 𝐴 ) ↑ 𝑘 ) / 𝑘 ) ) | |
| 32 | ovex | ⊢ ( ( ( 1 − 𝐴 ) ↑ 𝑛 ) / 𝑛 ) ∈ V | |
| 33 | 30 31 32 | fvmpt | ⊢ ( 𝑛 ∈ ℕ → ( ( 𝑘 ∈ ℕ ↦ ( ( ( 1 − 𝐴 ) ↑ 𝑘 ) / 𝑘 ) ) ‘ 𝑛 ) = ( ( ( 1 − 𝐴 ) ↑ 𝑛 ) / 𝑛 ) ) |
| 34 | 33 | adantl | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑘 ∈ ℕ ↦ ( ( ( 1 − 𝐴 ) ↑ 𝑘 ) / 𝑘 ) ) ‘ 𝑛 ) = ( ( ( 1 − 𝐴 ) ↑ 𝑛 ) / 𝑛 ) ) |
| 35 | nnnn0 | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ0 ) | |
| 36 | expcl | ⊢ ( ( ( 1 − 𝐴 ) ∈ ℂ ∧ 𝑛 ∈ ℕ0 ) → ( ( 1 − 𝐴 ) ↑ 𝑛 ) ∈ ℂ ) | |
| 37 | 15 35 36 | syl2an | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ ) → ( ( 1 − 𝐴 ) ↑ 𝑛 ) ∈ ℂ ) |
| 38 | nncn | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℂ ) | |
| 39 | 38 | adantl | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℂ ) |
| 40 | nnne0 | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ≠ 0 ) | |
| 41 | 40 | adantl | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ ) → 𝑛 ≠ 0 ) |
| 42 | 37 39 41 | divcld | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ ) → ( ( ( 1 − 𝐴 ) ↑ 𝑛 ) / 𝑛 ) ∈ ℂ ) |
| 43 | 34 42 | eqeltrd | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑘 ∈ ℕ ↦ ( ( ( 1 − 𝐴 ) ↑ 𝑘 ) / 𝑘 ) ) ‘ 𝑛 ) ∈ ℂ ) |
| 44 | 37 39 41 | divnegd | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ ) → - ( ( ( 1 − 𝐴 ) ↑ 𝑛 ) / 𝑛 ) = ( - ( ( 1 − 𝐴 ) ↑ 𝑛 ) / 𝑛 ) ) |
| 45 | 42 | mulm1d | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ ) → ( - 1 · ( ( ( 1 − 𝐴 ) ↑ 𝑛 ) / 𝑛 ) ) = - ( ( ( 1 − 𝐴 ) ↑ 𝑛 ) / 𝑛 ) ) |
| 46 | 35 | adantl | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ0 ) |
| 47 | expcl | ⊢ ( ( - 1 ∈ ℂ ∧ 𝑛 ∈ ℕ0 ) → ( - 1 ↑ 𝑛 ) ∈ ℂ ) | |
| 48 | 4 46 47 | sylancr | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ ) → ( - 1 ↑ 𝑛 ) ∈ ℂ ) |
| 49 | subcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 𝐴 − 1 ) ∈ ℂ ) | |
| 50 | 13 6 49 | sylancl | ⊢ ( 𝐴 ∈ 𝑆 → ( 𝐴 − 1 ) ∈ ℂ ) |
| 51 | expcl | ⊢ ( ( ( 𝐴 − 1 ) ∈ ℂ ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝐴 − 1 ) ↑ 𝑛 ) ∈ ℂ ) | |
| 52 | 50 35 51 | syl2an | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ ) → ( ( 𝐴 − 1 ) ↑ 𝑛 ) ∈ ℂ ) |
| 53 | 48 52 | mulneg1d | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ ) → ( - ( - 1 ↑ 𝑛 ) · ( ( 𝐴 − 1 ) ↑ 𝑛 ) ) = - ( ( - 1 ↑ 𝑛 ) · ( ( 𝐴 − 1 ) ↑ 𝑛 ) ) ) |
| 54 | 4 | a1i | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ ) → - 1 ∈ ℂ ) |
| 55 | neg1ne0 | ⊢ - 1 ≠ 0 | |
| 56 | 55 | a1i | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ ) → - 1 ≠ 0 ) |
| 57 | nnz | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℤ ) | |
| 58 | 57 | adantl | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℤ ) |
| 59 | 54 56 58 | expm1d | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ ) → ( - 1 ↑ ( 𝑛 − 1 ) ) = ( ( - 1 ↑ 𝑛 ) / - 1 ) ) |
| 60 | 6 | a1i | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ ) → 1 ∈ ℂ ) |
| 61 | ax-1ne0 | ⊢ 1 ≠ 0 | |
| 62 | 61 | a1i | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ ) → 1 ≠ 0 ) |
| 63 | 48 60 62 | divneg2d | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ ) → - ( ( - 1 ↑ 𝑛 ) / 1 ) = ( ( - 1 ↑ 𝑛 ) / - 1 ) ) |
| 64 | 48 | div1d | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ ) → ( ( - 1 ↑ 𝑛 ) / 1 ) = ( - 1 ↑ 𝑛 ) ) |
| 65 | 64 | negeqd | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ ) → - ( ( - 1 ↑ 𝑛 ) / 1 ) = - ( - 1 ↑ 𝑛 ) ) |
| 66 | 59 63 65 | 3eqtr2d | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ ) → ( - 1 ↑ ( 𝑛 − 1 ) ) = - ( - 1 ↑ 𝑛 ) ) |
| 67 | 66 | oveq1d | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ ) → ( ( - 1 ↑ ( 𝑛 − 1 ) ) · ( ( 𝐴 − 1 ) ↑ 𝑛 ) ) = ( - ( - 1 ↑ 𝑛 ) · ( ( 𝐴 − 1 ) ↑ 𝑛 ) ) ) |
| 68 | 50 | mulm1d | ⊢ ( 𝐴 ∈ 𝑆 → ( - 1 · ( 𝐴 − 1 ) ) = - ( 𝐴 − 1 ) ) |
| 69 | negsubdi2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 1 ∈ ℂ ) → - ( 𝐴 − 1 ) = ( 1 − 𝐴 ) ) | |
| 70 | 13 6 69 | sylancl | ⊢ ( 𝐴 ∈ 𝑆 → - ( 𝐴 − 1 ) = ( 1 − 𝐴 ) ) |
| 71 | 68 70 | eqtr2d | ⊢ ( 𝐴 ∈ 𝑆 → ( 1 − 𝐴 ) = ( - 1 · ( 𝐴 − 1 ) ) ) |
| 72 | 71 | oveq1d | ⊢ ( 𝐴 ∈ 𝑆 → ( ( 1 − 𝐴 ) ↑ 𝑛 ) = ( ( - 1 · ( 𝐴 − 1 ) ) ↑ 𝑛 ) ) |
| 73 | 72 | adantr | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ ) → ( ( 1 − 𝐴 ) ↑ 𝑛 ) = ( ( - 1 · ( 𝐴 − 1 ) ) ↑ 𝑛 ) ) |
| 74 | mulexp | ⊢ ( ( - 1 ∈ ℂ ∧ ( 𝐴 − 1 ) ∈ ℂ ∧ 𝑛 ∈ ℕ0 ) → ( ( - 1 · ( 𝐴 − 1 ) ) ↑ 𝑛 ) = ( ( - 1 ↑ 𝑛 ) · ( ( 𝐴 − 1 ) ↑ 𝑛 ) ) ) | |
| 75 | 4 50 35 74 | mp3an3an | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ ) → ( ( - 1 · ( 𝐴 − 1 ) ) ↑ 𝑛 ) = ( ( - 1 ↑ 𝑛 ) · ( ( 𝐴 − 1 ) ↑ 𝑛 ) ) ) |
| 76 | 73 75 | eqtrd | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ ) → ( ( 1 − 𝐴 ) ↑ 𝑛 ) = ( ( - 1 ↑ 𝑛 ) · ( ( 𝐴 − 1 ) ↑ 𝑛 ) ) ) |
| 77 | 76 | negeqd | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ ) → - ( ( 1 − 𝐴 ) ↑ 𝑛 ) = - ( ( - 1 ↑ 𝑛 ) · ( ( 𝐴 − 1 ) ↑ 𝑛 ) ) ) |
| 78 | 53 67 77 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ ) → ( ( - 1 ↑ ( 𝑛 − 1 ) ) · ( ( 𝐴 − 1 ) ↑ 𝑛 ) ) = - ( ( 1 − 𝐴 ) ↑ 𝑛 ) ) |
| 79 | 78 | oveq1d | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ ) → ( ( ( - 1 ↑ ( 𝑛 − 1 ) ) · ( ( 𝐴 − 1 ) ↑ 𝑛 ) ) / 𝑛 ) = ( - ( ( 1 − 𝐴 ) ↑ 𝑛 ) / 𝑛 ) ) |
| 80 | 44 45 79 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ ) → ( - 1 · ( ( ( 1 − 𝐴 ) ↑ 𝑛 ) / 𝑛 ) ) = ( ( ( - 1 ↑ ( 𝑛 − 1 ) ) · ( ( 𝐴 − 1 ) ↑ 𝑛 ) ) / 𝑛 ) ) |
| 81 | nnm1nn0 | ⊢ ( 𝑛 ∈ ℕ → ( 𝑛 − 1 ) ∈ ℕ0 ) | |
| 82 | 81 | adantl | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ ) → ( 𝑛 − 1 ) ∈ ℕ0 ) |
| 83 | expcl | ⊢ ( ( - 1 ∈ ℂ ∧ ( 𝑛 − 1 ) ∈ ℕ0 ) → ( - 1 ↑ ( 𝑛 − 1 ) ) ∈ ℂ ) | |
| 84 | 4 82 83 | sylancr | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ ) → ( - 1 ↑ ( 𝑛 − 1 ) ) ∈ ℂ ) |
| 85 | 84 52 39 41 | div23d | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ ) → ( ( ( - 1 ↑ ( 𝑛 − 1 ) ) · ( ( 𝐴 − 1 ) ↑ 𝑛 ) ) / 𝑛 ) = ( ( ( - 1 ↑ ( 𝑛 − 1 ) ) / 𝑛 ) · ( ( 𝐴 − 1 ) ↑ 𝑛 ) ) ) |
| 86 | 80 85 | eqtr2d | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ ) → ( ( ( - 1 ↑ ( 𝑛 − 1 ) ) / 𝑛 ) · ( ( 𝐴 − 1 ) ↑ 𝑛 ) ) = ( - 1 · ( ( ( 1 − 𝐴 ) ↑ 𝑛 ) / 𝑛 ) ) ) |
| 87 | oveq1 | ⊢ ( 𝑘 = 𝑛 → ( 𝑘 − 1 ) = ( 𝑛 − 1 ) ) | |
| 88 | 87 | oveq2d | ⊢ ( 𝑘 = 𝑛 → ( - 1 ↑ ( 𝑘 − 1 ) ) = ( - 1 ↑ ( 𝑛 − 1 ) ) ) |
| 89 | 88 29 | oveq12d | ⊢ ( 𝑘 = 𝑛 → ( ( - 1 ↑ ( 𝑘 − 1 ) ) / 𝑘 ) = ( ( - 1 ↑ ( 𝑛 − 1 ) ) / 𝑛 ) ) |
| 90 | oveq2 | ⊢ ( 𝑘 = 𝑛 → ( ( 𝐴 − 1 ) ↑ 𝑘 ) = ( ( 𝐴 − 1 ) ↑ 𝑛 ) ) | |
| 91 | 89 90 | oveq12d | ⊢ ( 𝑘 = 𝑛 → ( ( ( - 1 ↑ ( 𝑘 − 1 ) ) / 𝑘 ) · ( ( 𝐴 − 1 ) ↑ 𝑘 ) ) = ( ( ( - 1 ↑ ( 𝑛 − 1 ) ) / 𝑛 ) · ( ( 𝐴 − 1 ) ↑ 𝑛 ) ) ) |
| 92 | eqid | ⊢ ( 𝑘 ∈ ℕ ↦ ( ( ( - 1 ↑ ( 𝑘 − 1 ) ) / 𝑘 ) · ( ( 𝐴 − 1 ) ↑ 𝑘 ) ) ) = ( 𝑘 ∈ ℕ ↦ ( ( ( - 1 ↑ ( 𝑘 − 1 ) ) / 𝑘 ) · ( ( 𝐴 − 1 ) ↑ 𝑘 ) ) ) | |
| 93 | ovex | ⊢ ( ( ( - 1 ↑ ( 𝑛 − 1 ) ) / 𝑛 ) · ( ( 𝐴 − 1 ) ↑ 𝑛 ) ) ∈ V | |
| 94 | 91 92 93 | fvmpt | ⊢ ( 𝑛 ∈ ℕ → ( ( 𝑘 ∈ ℕ ↦ ( ( ( - 1 ↑ ( 𝑘 − 1 ) ) / 𝑘 ) · ( ( 𝐴 − 1 ) ↑ 𝑘 ) ) ) ‘ 𝑛 ) = ( ( ( - 1 ↑ ( 𝑛 − 1 ) ) / 𝑛 ) · ( ( 𝐴 − 1 ) ↑ 𝑛 ) ) ) |
| 95 | 94 | adantl | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑘 ∈ ℕ ↦ ( ( ( - 1 ↑ ( 𝑘 − 1 ) ) / 𝑘 ) · ( ( 𝐴 − 1 ) ↑ 𝑘 ) ) ) ‘ 𝑛 ) = ( ( ( - 1 ↑ ( 𝑛 − 1 ) ) / 𝑛 ) · ( ( 𝐴 − 1 ) ↑ 𝑛 ) ) ) |
| 96 | 34 | oveq2d | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ ) → ( - 1 · ( ( 𝑘 ∈ ℕ ↦ ( ( ( 1 − 𝐴 ) ↑ 𝑘 ) / 𝑘 ) ) ‘ 𝑛 ) ) = ( - 1 · ( ( ( 1 − 𝐴 ) ↑ 𝑛 ) / 𝑛 ) ) ) |
| 97 | 86 95 96 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑘 ∈ ℕ ↦ ( ( ( - 1 ↑ ( 𝑘 − 1 ) ) / 𝑘 ) · ( ( 𝐴 − 1 ) ↑ 𝑘 ) ) ) ‘ 𝑛 ) = ( - 1 · ( ( 𝑘 ∈ ℕ ↦ ( ( ( 1 − 𝐴 ) ↑ 𝑘 ) / 𝑘 ) ) ‘ 𝑛 ) ) ) |
| 98 | 2 3 5 27 43 97 | isermulc2 | ⊢ ( 𝐴 ∈ 𝑆 → seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( ( ( - 1 ↑ ( 𝑘 − 1 ) ) / 𝑘 ) · ( ( 𝐴 − 1 ) ↑ 𝑘 ) ) ) ) ⇝ ( - 1 · - ( log ‘ 𝐴 ) ) ) |
| 99 | 1 | dvlog2lem | ⊢ 𝑆 ⊆ ( ℂ ∖ ( -∞ (,] 0 ) ) |
| 100 | 99 | sseli | ⊢ ( 𝐴 ∈ 𝑆 → 𝐴 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ) |
| 101 | eqid | ⊢ ( ℂ ∖ ( -∞ (,] 0 ) ) = ( ℂ ∖ ( -∞ (,] 0 ) ) | |
| 102 | 101 | logdmn0 | ⊢ ( 𝐴 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) → 𝐴 ≠ 0 ) |
| 103 | 100 102 | syl | ⊢ ( 𝐴 ∈ 𝑆 → 𝐴 ≠ 0 ) |
| 104 | 13 103 | logcld | ⊢ ( 𝐴 ∈ 𝑆 → ( log ‘ 𝐴 ) ∈ ℂ ) |
| 105 | 104 | negcld | ⊢ ( 𝐴 ∈ 𝑆 → - ( log ‘ 𝐴 ) ∈ ℂ ) |
| 106 | 105 | mulm1d | ⊢ ( 𝐴 ∈ 𝑆 → ( - 1 · - ( log ‘ 𝐴 ) ) = - - ( log ‘ 𝐴 ) ) |
| 107 | 104 | negnegd | ⊢ ( 𝐴 ∈ 𝑆 → - - ( log ‘ 𝐴 ) = ( log ‘ 𝐴 ) ) |
| 108 | 106 107 | eqtrd | ⊢ ( 𝐴 ∈ 𝑆 → ( - 1 · - ( log ‘ 𝐴 ) ) = ( log ‘ 𝐴 ) ) |
| 109 | 98 108 | breqtrd | ⊢ ( 𝐴 ∈ 𝑆 → seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( ( ( - 1 ↑ ( 𝑘 − 1 ) ) / 𝑘 ) · ( ( 𝐴 − 1 ) ↑ 𝑘 ) ) ) ) ⇝ ( log ‘ 𝐴 ) ) |