This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The exponential of the negative of a number, when the exponent is odd. (Contributed by Mario Carneiro, 25-Apr-2015) (Proof shortened by AV, 10-Jul-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oexpneg | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) → ( - 𝐴 ↑ 𝑁 ) = - ( 𝐴 ↑ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnz | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) | |
| 2 | odd2np1 | ⊢ ( 𝑁 ∈ ℤ → ( ¬ 2 ∥ 𝑁 ↔ ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) | |
| 3 | 1 2 | syl | ⊢ ( 𝑁 ∈ ℕ → ( ¬ 2 ∥ 𝑁 ↔ ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) |
| 4 | 3 | biimpa | ⊢ ( ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) → ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) |
| 5 | 4 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) → ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) |
| 6 | simpl1 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → 𝐴 ∈ ℂ ) | |
| 7 | simprr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) | |
| 8 | simpl2 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → 𝑁 ∈ ℕ ) | |
| 9 | 8 | nncnd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → 𝑁 ∈ ℂ ) |
| 10 | 1cnd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → 1 ∈ ℂ ) | |
| 11 | 2z | ⊢ 2 ∈ ℤ | |
| 12 | simprl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → 𝑛 ∈ ℤ ) | |
| 13 | zmulcl | ⊢ ( ( 2 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( 2 · 𝑛 ) ∈ ℤ ) | |
| 14 | 11 12 13 | sylancr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → ( 2 · 𝑛 ) ∈ ℤ ) |
| 15 | 14 | zcnd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → ( 2 · 𝑛 ) ∈ ℂ ) |
| 16 | 9 10 15 | subadd2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → ( ( 𝑁 − 1 ) = ( 2 · 𝑛 ) ↔ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) |
| 17 | 7 16 | mpbird | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → ( 𝑁 − 1 ) = ( 2 · 𝑛 ) ) |
| 18 | nnm1nn0 | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 − 1 ) ∈ ℕ0 ) | |
| 19 | 8 18 | syl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → ( 𝑁 − 1 ) ∈ ℕ0 ) |
| 20 | 17 19 | eqeltrrd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → ( 2 · 𝑛 ) ∈ ℕ0 ) |
| 21 | 6 20 | expcld | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → ( 𝐴 ↑ ( 2 · 𝑛 ) ) ∈ ℂ ) |
| 22 | 21 6 | mulneg2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → ( ( 𝐴 ↑ ( 2 · 𝑛 ) ) · - 𝐴 ) = - ( ( 𝐴 ↑ ( 2 · 𝑛 ) ) · 𝐴 ) ) |
| 23 | sqneg | ⊢ ( 𝐴 ∈ ℂ → ( - 𝐴 ↑ 2 ) = ( 𝐴 ↑ 2 ) ) | |
| 24 | 6 23 | syl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → ( - 𝐴 ↑ 2 ) = ( 𝐴 ↑ 2 ) ) |
| 25 | 24 | oveq1d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → ( ( - 𝐴 ↑ 2 ) ↑ 𝑛 ) = ( ( 𝐴 ↑ 2 ) ↑ 𝑛 ) ) |
| 26 | 6 | negcld | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → - 𝐴 ∈ ℂ ) |
| 27 | 2rp | ⊢ 2 ∈ ℝ+ | |
| 28 | 27 | a1i | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → 2 ∈ ℝ+ ) |
| 29 | 12 | zred | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → 𝑛 ∈ ℝ ) |
| 30 | 20 | nn0ge0d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → 0 ≤ ( 2 · 𝑛 ) ) |
| 31 | 28 29 30 | prodge0rd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → 0 ≤ 𝑛 ) |
| 32 | elnn0z | ⊢ ( 𝑛 ∈ ℕ0 ↔ ( 𝑛 ∈ ℤ ∧ 0 ≤ 𝑛 ) ) | |
| 33 | 12 31 32 | sylanbrc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → 𝑛 ∈ ℕ0 ) |
| 34 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 35 | 34 | a1i | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → 2 ∈ ℕ0 ) |
| 36 | 26 33 35 | expmuld | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → ( - 𝐴 ↑ ( 2 · 𝑛 ) ) = ( ( - 𝐴 ↑ 2 ) ↑ 𝑛 ) ) |
| 37 | 6 33 35 | expmuld | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → ( 𝐴 ↑ ( 2 · 𝑛 ) ) = ( ( 𝐴 ↑ 2 ) ↑ 𝑛 ) ) |
| 38 | 25 36 37 | 3eqtr4d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → ( - 𝐴 ↑ ( 2 · 𝑛 ) ) = ( 𝐴 ↑ ( 2 · 𝑛 ) ) ) |
| 39 | 38 | oveq1d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → ( ( - 𝐴 ↑ ( 2 · 𝑛 ) ) · - 𝐴 ) = ( ( 𝐴 ↑ ( 2 · 𝑛 ) ) · - 𝐴 ) ) |
| 40 | 26 20 | expp1d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → ( - 𝐴 ↑ ( ( 2 · 𝑛 ) + 1 ) ) = ( ( - 𝐴 ↑ ( 2 · 𝑛 ) ) · - 𝐴 ) ) |
| 41 | 7 | oveq2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → ( - 𝐴 ↑ ( ( 2 · 𝑛 ) + 1 ) ) = ( - 𝐴 ↑ 𝑁 ) ) |
| 42 | 40 41 | eqtr3d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → ( ( - 𝐴 ↑ ( 2 · 𝑛 ) ) · - 𝐴 ) = ( - 𝐴 ↑ 𝑁 ) ) |
| 43 | 39 42 | eqtr3d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → ( ( 𝐴 ↑ ( 2 · 𝑛 ) ) · - 𝐴 ) = ( - 𝐴 ↑ 𝑁 ) ) |
| 44 | 22 43 | eqtr3d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → - ( ( 𝐴 ↑ ( 2 · 𝑛 ) ) · 𝐴 ) = ( - 𝐴 ↑ 𝑁 ) ) |
| 45 | 6 20 | expp1d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → ( 𝐴 ↑ ( ( 2 · 𝑛 ) + 1 ) ) = ( ( 𝐴 ↑ ( 2 · 𝑛 ) ) · 𝐴 ) ) |
| 46 | 7 | oveq2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → ( 𝐴 ↑ ( ( 2 · 𝑛 ) + 1 ) ) = ( 𝐴 ↑ 𝑁 ) ) |
| 47 | 45 46 | eqtr3d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → ( ( 𝐴 ↑ ( 2 · 𝑛 ) ) · 𝐴 ) = ( 𝐴 ↑ 𝑁 ) ) |
| 48 | 47 | negeqd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → - ( ( 𝐴 ↑ ( 2 · 𝑛 ) ) · 𝐴 ) = - ( 𝐴 ↑ 𝑁 ) ) |
| 49 | 44 48 | eqtr3d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → ( - 𝐴 ↑ 𝑁 ) = - ( 𝐴 ↑ 𝑁 ) ) |
| 50 | 5 49 | rexlimddv | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) → ( - 𝐴 ↑ 𝑁 ) = - ( 𝐴 ↑ 𝑁 ) ) |