This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Absolute value and 'less than' relation. (Contributed by Mario Carneiro, 29-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | absltd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| absltd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| Assertion | absltd | ⊢ ( 𝜑 → ( ( abs ‘ 𝐴 ) < 𝐵 ↔ ( - 𝐵 < 𝐴 ∧ 𝐴 < 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | absltd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | absltd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | abslt | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( abs ‘ 𝐴 ) < 𝐵 ↔ ( - 𝐵 < 𝐴 ∧ 𝐴 < 𝐵 ) ) ) | |
| 4 | 1 2 3 | syl2anc | ⊢ ( 𝜑 → ( ( abs ‘ 𝐴 ) < 𝐵 ↔ ( - 𝐵 < 𝐴 ∧ 𝐴 < 𝐵 ) ) ) |