This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A commutative/associative law for division. (Contributed by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | div1d.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| divcld.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | ||
| divmuld.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | ||
| divmuld.4 | ⊢ ( 𝜑 → 𝐵 ≠ 0 ) | ||
| Assertion | div32d | ⊢ ( 𝜑 → ( ( 𝐴 / 𝐵 ) · 𝐶 ) = ( 𝐴 · ( 𝐶 / 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | div1d.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 2 | divcld.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | |
| 3 | divmuld.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | |
| 4 | divmuld.4 | ⊢ ( 𝜑 → 𝐵 ≠ 0 ) | |
| 5 | div32 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 / 𝐵 ) · 𝐶 ) = ( 𝐴 · ( 𝐶 / 𝐵 ) ) ) | |
| 6 | 1 2 4 3 5 | syl121anc | ⊢ ( 𝜑 → ( ( 𝐴 / 𝐵 ) · 𝐶 ) = ( 𝐴 · ( 𝐶 / 𝐵 ) ) ) |